A single pyridine unit incorporated into G-quadruplex DNA has revealed efficient energy transfer reactions in cation-containing G-quadruplexes. 8-(2-Pyridyl)-2'-deoxyguanosine, "2PyG", is a highly sensitive internal fluorescent probe of G-quadruplex folding and energy transfer. 2PyG was minimally disruptive to G-quadruplex folding and exhibited intense fluorescence, even when it was base-stacked with other guanine residues. Using 2PyG we have quantified energy transfer efficiencies within G-quadruplex structures prepared under conditions of excess Na(+)/K(+) (110 mM) or in 40% polyethylene glycol (PEG) under salt deficient conditions. G-quadruplex structures containing coordinated cations exhibited efficient DNA-to-probe energy transfer reactions (η(t) = 0.11-0.41), while PEG-folded G-quadruplexes exhibited very little energy transfer (η(t) = 0.02-0.07). Experiments conducted using unmodified G-quadruplexes suggest that cation coordination at the O(6) position of guanine residues results in enhanced quantum yields of G-quadruplex nucleobases that, in turn, serve as efficient energy donors to 2PyG. Given the growing interest in G-quadruplex-based devices and materials, these results will provide important design principles toward harnessing the potentially useful photophysical properties of G-quadruplex wires and other G-rich structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja1079578 | DOI Listing |
Nanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Madhya Pradesh, 462066, India.
Extended ligand conjugation enhances luminescent thermometry in [Dy(diketone)(bipyrimidine)] SMMs, as substantiated by crystallographic, photoluminescence, and lifetime decay analyses. This conjugation facilitates rare direct energy transfer from the ligands' singlet state to the metal centers, as evidenced by the nanosecond excited-state lifetime of Dy(III).
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Physics, Zhejiang University, Hangzhou, 310058, PR China.
The self-assembly of intrinsically disordered proteins (IDPs) into condensed phases and the formation of membrane-less organelles (MLOs) can be considered as the phenomenon of collective behavior. The conformational dynamics of IDPs are essential for their interactions and the formation of a condensed phase. From a physical perspective, collective behavior and the emergence of phase are associated with long-range correlations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Fudan University, Laboratory of Advanced Materials, Shanghai, 200433, Shanghai, CHINA.
Tellurium (Te), with its rich valence states (-2 to +6), could endow aqueous batteries with potentially high specific capacity. However, achieving complete and stable hypervalent Te0/Te4+ electrochemistry in an aqueous environment poses significant challenges, owing to the sluggish reduction kinetics, the easy dissolution of Te4+ species, and a controversial energy storage mechanism. Herein, for the first time, we demonstrate an amorphous strategy for robust aqueous TeO2/Te electrochemistry.
View Article and Find Full Text PDFSmall
January 2025
National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.
2D materials feature large specific surface areas and abundant active sites, showing great potential in energy storage and conversion. However, the dense, stacked structure severely restricts its practical application. Inspired by the structure of bamboo in nature, hollow interior and porous exterior wall, hollow MXene aerogel fiber (HA-TiCT fiber) is proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!