Factors affecting translation of mRNA contribute to the complexity of eukaryotic proteomes. In some cases, translation of a particular mRNA can generate multiple proteins. However, the factors that determine whether ribosomes initiate translation from the first AUG codon in the transcript, from a downstream codon, or from multiple sites are not completely understood. Various mRNA properties, including AUG codon-accessibility and 5' leader length have been proposed as potential determinants that affect where ribosomes initiate translation. To explore this issue, we performed studies using synthetic mRNAs with two in-frame AUG codons-both in excellent context. Open reading frames initiating at AUG1 and AUG2 encode large and small isoforms of a reporter protein, respectively. Translation of such an mRNA in COS-7 cells was shown to be 5' cap-dependent and to occur efficiently from both AUG codons. AUG codon-accessibility was modified by using two different elements: an antisense locked nucleic acid oligonucleotide and an exon-junction complex. When either element was used to mask AUG1, the ratio of the proteins synthesized changed, favoring the smaller (AUG2-initiated) protein. In addition, we observed that increased leader length by itself changed the ratio of the proteins and favored initiation at AUG1. These observations demonstrate that initiation codon selection is affected by various factors, including AUG codon-accessibility and 5' leader length, and is not necessarily determined by the order of AUG codons (5'→3'). The modulation of AUG codon accessibility may provide a powerful means of translation regulation in eukaryotic cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991327PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0015057PLOS

Publication Analysis

Top Keywords

translation mrna
12
aug codon-accessibility
12
leader length
12
initiation codon
8
codon selection
8
ribosomes initiate
8
initiate translation
8
aug
8
aug codon
8
including aug
8

Similar Publications

PATL2 mutations affect human oocyte maternal mRNA homeostasis and protein interactions in cell cycle regulation.

Cell Biosci

December 2024

Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.

Background: Oocyte maturation defect (OMD) and early embryonic arrest result in female infertility. Previous studies have linked biallelic mutations in the PATL2 gene to OMD, yet the underlying mechanism remains largely unknown.

Results: This study uncovers three novel mutations (c.

View Article and Find Full Text PDF

Synthesis of functional enzymes involved in glutathione production during linear motility in boar sperm.

Free Radic Biol Med

December 2024

Laboratory of Reproductive Endocrinology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashihiroshima, Hiroshima, 7398528, Japan. Electronic address:

Sperm cells are highly susceptible to oxidative stress, which decreases their motility and fertility. However, glutathione (GSH) plays a critical role in protecting sperm cells from oxidative damage, a common byproduct of mitochondrial oxidative phosphorylation. On the other hand, GSH biosynthesis in sperm is limited by the availability of cysteine (Cys), which is inherently unstable and found at low concentrations in boar seminal plasma.

View Article and Find Full Text PDF

Exploring the Role of Exosomal lncRNA in Cancer Immunopathogenesis: Unraveling the Immune Response and EMT Pathways.

Exp Cell Res

December 2024

Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq. Electronic address:

Exosomes are membrane-bound vesicles secreted by diverse cell types, serving as crucial mediators in intercellular communication and significantly influencing cancer development. Exosomes facilitate complex signaling processes in the tumor microenvironment for immunomodulation, metastasis, angiogenesis, and treatment resistance. Notably, long non-coding RNAs (lncRNAs), a class of non-coding RNAs, engage with mRNA, DNA, proteins, and miRNAs to modulate gene expression through multiple mechanisms, including transcriptional, post-transcriptional, translational, and epigenetic pathways.

View Article and Find Full Text PDF

SGLT2 expression in human vasculature and heart correlates with low-grade inflammation and causes eNOS-NO/ROS imbalance.

Cardiovasc Res

December 2024

Translational Cardiovascular Medicine UR 3074, FMTS, 1 rue Eugène Boeckel, Strasbourg 67084, France.

Aims: Sodium-glucose co-transporter 2 inhibitors (SGLT2i) show a cardioprotective effect in heart failure and myocardial infarction, pathologies often associated with low-grade inflammation. This cross-sectional study aims to investigate whether low-grade inflammation regulates SGLT2 expression and function in human vasculature, heart, and endothelial cells (ECs).

Methods And Results: Human internal thoracic artery (ITA), left ventricle (LV) specimens, and cultured porcine coronary artery ECs were used.

View Article and Find Full Text PDF

The bacterial chaperone Trigger factor (TF) binds to ribosome-nascent chain complexes (RNCs) and cotranslationally aids the folding of proteins in bacteria. Decades of studies have given a broad, but often conflicting, description of the substrate specificity of TF, its RNC-binding dynamics, and competition with other RNC-binding factors, such as the Signal Recognition Particle (SRP). Previous RNC-binding kinetics experiments were commonly conducted on stalled RNCs in reconstituted systems, and consequently, may not be representative of the interaction of TF with ribosomes translating mRNA in the cytoplasm of the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!