Here we show, analytically and numerically, that in a TiO(2) double-groove grating with two different groove widths per period attached on the SiO(2) substrate, the normally incident light couples to the +1st-order transmission with 96.9% efficiency and with a 50° diffraction angle that is larger than the SiO(2)-air interface critical angle. Modal analysis reveals that three propagating modes for the +1st diffraction order reach the grating back end in phase, while the corresponding propagating modes for the -1st and zeroth orders are added destructively at the grating end. Four optical devices based on this grating characteristic are numerically demonstrated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.35.003973 | DOI Listing |
Transl Vis Sci Technol
January 2025
College of Optometry, University of Houston, Houston, TX, USA.
Purpose: To characterize frequency-dependent wave speed dispersion in the human cornea using microliter air-pulse optical coherence elastography (OCE), and to evaluate the applicability of Lamb wave theory for determining corneal elastic modulus using high-frequency symmetric (S0) and anti-symmetric (A0) guided waves in cornea.
Methods: Wave speed dispersion analysis for transient (0.5 ms) microliter air-pulse stimulation was performed in four rabbit eyes ex vivo and compared to air-coupled ultrasound excitation.
Sci Bull (Beijing)
January 2025
School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; Center for High Energy Physics, Peking University, Beijing 100871, China; Key Laboratory of Particle Acceleration Physics and Technology, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Dark photons, as a minimal extension of the Standard Model through an additional Abelian gauge group, may propagate relativistically across the galaxy, originating from dark matter decay or annihilation, thereby contributing to a galactic dark photon background. The generation of dark photons typically favors certain polarization modes, which are dependent on the interactions between dark matter and dark photons. We introduce a framework in which a resonant cavity is utilized to detect and differentiate these polarizations, leveraging the daily variation in expected signals due to the anisotropic distribution of dark photons and the rotation of the Earth.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.
Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratoire d'Acoustique de l'Université du Mans (LAUM), UMR 6613, Institut d'Acoustique - Graduate School (IA-GS), CNRS, Le Mans Université, Le Mans, France.
We report on conditions of invariance of the transmitted pattern in the propagation through a periodic waveguide, the incident wave having no effect on the intensity pattern of the transmitted field. This phenomenon is reminiscent of that observed when illuminating a disordered medium in the regime of Anderson localization, as a consequence of the contribution of a single transmission eigenchannel to the transmitted wave. It is shown that the freezing of the transmitted wave is not intrinsically related to the disorder and that, whatever the frequency, it can also be observed in a regular, periodic system, provided that at most one Bloch mode is propagating.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943-5216, USA.
The shear wave speed is often small compared to the compressional wave speed in the top part of the seabed, where acoustic normal modes penetrate. In sediments with weak but finite shear rigidity, the strongest conversion from compressional to shear waves occurs at interfaces within the sediment. Shear wave generation at such interfaces and interference within sediment layers lead to first-order perturbations in the normal mode phase speed and contributions to sound attenuation, which vary rapidly with frequency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!