Background: Following various types of plastic surgery, such as adipose grafting and flap elevation, adipose tissue undergoes ischemia, leading to hypoxia and nutrient depletion. However, few studies have examined ischemic and/or hypoxic changes in adipose tissue.

Methods: The authors established surgically induced ischemia models by severing blood vessels supplying the inguinal fat pads in mice. The partial pressure of oxygen in adipose tissue was measured with an oxygen monitor, and ischemic changes were analyzed by whole-mount staining, immunohistochemistry, flow cytometry, and Western blotting. The authors also examined cell survival under a hypoxic condition in vitro.

Results: Models for three degrees (mild, intermediate, and severe) of ischemia showed approximately 75, 55, and 20 percent of the partial pressure of oxygen level in normal adipose tissue (50.5±1.3 mm Hg), respectively. Adipose tissue atrophy with substantial fibrosis on day 28 was seen, depending on the severity of ischemia. Intermediate and severe ischemia induced elevated expression of hypoxia-inducible factor 1α and fibroblast growth factor 2 on day 1 and degenerative changes (i.e., apoptosis, necrosis, and macrophage infiltration and phagocytosis) in adipose tissue. Dead cells included adipocytes, vascular endothelial cells, and blood-derived cells, but not adipose-derived stem/progenitor cells. Subsequent to degenerative changes, regenerative changes were seen, including angiogenesis, adipogenesis, and proliferation of cells (adipose-derived stem/progenitor cells, vascular endothelial cells, and blood cells). The authors found that, in vitro, the experimentally differentiated adipocytes underwent apoptosis and/or necrosis under severe hypoxia, but adipose-derived stem/progenitor cells remained viable.

Conclusions: Severe ischemia/hypoxia induces degenerative changes in adipose tissue and subsequent adaptive tissue remodeling. Adipocytes die easily under ischemic conditions, whereas adipose-derived stem/progenitor cells are activated and contribute to adipose tissue repair.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0b013e3181f4468bDOI Listing

Publication Analysis

Top Keywords

adipose tissue
32
stem/progenitor cells
20
adipose-derived stem/progenitor
16
degenerative changes
12
cells
11
adipose
10
tissue remodeling
8
tissue
8
changes adipose
8
partial pressure
8

Similar Publications

Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.

View Article and Find Full Text PDF

The hypothalamus integrates peripheral signals and modulates food intake and energy expenditure by regulating the metabolic function of peripheral tissues, including the liver and adipose tissue. In a previous study, we demonstrated that s-resistin, an intracellular resistin isoform highly expressed in the hypothalamus and upregulated during aging, is important in the central control of energy homeostasis, affecting mainly the peripheral response to insulin by still unknown mechanisms. Herein, using an intracerebroventricular injection of a specific lentiviral RNAi against s-resistin, we assessed, in the Wistar rat, the effects of central s-resistin downregulation on the expression and phosphorylation levels of intermediates involved in insulin signaling and the inflammatory response in epididymal white adipose tissue (eWAT) and liver.

View Article and Find Full Text PDF

Intestinal epithelial cell NCoR deficiency ameliorates obesity and metabolic syndrome.

Acta Pharm Sin B

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.

View Article and Find Full Text PDF

Obesity exacerbates the risk and aggressiveness of many types of cancer. Adipose tissue (AT) represents a prevalent component of the tumor microenvironment (TME) and contributes to cancer development and progression. Reciprocal communication between cancer and adipose cells leads to the generation of cancer-associated adipocytes (CAAs), which in turn foster tumor invasiveness by producing paracrine metabolites, adipocytokines, and growth factors.

View Article and Find Full Text PDF

Introduction: Hand rejuvenation addresses aging-related changes such as subcutaneous fat loss, skin degradation, and photodamage. Autologous fat transfer (AFT) has emerged as a promising treatment, offering durable volume augmentation and regenerative effects. This study aims to systematically review the evidence on the techniques, outcomes, and complications of AFT for hand rejuvenation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!