Background: Recent evidence suggests that hydrogen sulfide is capable of mitigating the degree of cellular damage associated with ischemia-reperfusion injury. The purpose of this study was to determine whether it is protective in skeletal muscle.

Methods: This study used both in vitro (cultured myotubes subjected to sequential anoxia and normoxia) and in vivo (mouse hind-limb ischemia followed by reperfusion) models in which hydrogen sulfide (0 to 1000 μM) was delivered before the onset of oxygen deficiency. Injury score and apoptotic index were determined by analysis of specimens stained with hematoxylin and eosin and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, respectively.

Results: In vitro, hydrogen sulfide reduced the apoptotic index by as much as 99 percent (p=0.001), with optimal protection conferred by raising intravascular hydrogen sulfide to 10 μM. In vivo, 10 μM hydrogen sulfide delivered before 3 hours of hind-limb ischemia followed by 3 hours of reperfusion resulted in protection against ischemia-reperfusion injury-induced cellular changes, as evidenced by significant decreases in injury score and apoptotic index (by as much as 91 percent; p=0.001). These findings were consistent at 4 weeks after injury and reperfusion.

Conclusion: These findings confirm that the preischemic delivery of hydrogen sulfide limits ischemia-reperfusion injury-induced cellular damage in myotubes and skeletal muscle and suggests that, when given in the appropriate dose, this molecule may have significant therapeutic applications in multiple clinical scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PRS.0b013e3181f446bcDOI Listing

Publication Analysis

Top Keywords

hydrogen sulfide
28
skeletal muscle
8
ischemia reperfusion
8
cellular damage
8
hind-limb ischemia
8
injury score
8
score apoptotic
8
apoptotic percent
8
percent p=0001
8
ischemia-reperfusion injury-induced
8

Similar Publications

Sulfur-containing small molecules, mainly including cysteine (Cys), homocysteine (Hcy), glutathione (GSH), and hydrogen sulfide (HS), are crucial biomarkers, and their levels in different body locations (living cells, tissues, blood, urine, saliva, ) are inconsistent and constantly changing. Therefore, it is highly meaningful and challenging to synchronously and accurately detect them in complex multi-component samples without mutual interference. In this work, we propose a steric hindrance-regulated probe, NBD-2FDCI, with single excitation dual emissions to achieve self-adaptive detection of four analytes.

View Article and Find Full Text PDF

Lead Phosphate Material for Exclusive Detection of Hydrogen Sulfide Gas.

ACS Sens

January 2025

School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China.

Efficient gas sensors that can accurately detect and identify hydrogen sulfide are essential for various practical applications. Conventional resistive sensors often lack the necessary selectivity, which hampers timely and effective HS detection. This study presents lead phosphate-based gas sensors specifically designed for HS detection, which effectively eliminate interference effects.

View Article and Find Full Text PDF

Biofiltration for odor mitigation in water resource recovery facilities.

Sci Total Environ

January 2025

Department of Civil Engineering, City College of New York, New York, NY 10031, United States.

Odor emissions, primarily from anthropogenic activities like waste treatment and industrial processes, pose significant challenges in urban areas, particularly near water resource recovery facilities. While these emissions are generally not toxic, they can adversely affect community wellbeing and investment, prompting stricter regulations in some regions. For example, New York State's hydrogen sulfide guidelines are more stringent than federal standards.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!