Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fed-batch cultures of Hansenula polymorpha were studied to develop an efficient biosystem to produce recombinant human serum albumin (HSA). To comply with this purpose, we used high purity oxygen supplying strategy to increase viable cell density in a bioreactor and enhance the production of target protein. A mutant strain, H. polymorpha GOT7 was utilized in this study as a host strain in both 5-L and 30-L scale fermentors. To supply high purity oxygen into a bioreactor, nearly 100 % high purity oxygen from commercial bomb or higher than 93 % oxygen available in-situ from a pressure swing adsorption oxygen generator (PSA) was employed. Under the optimal fermentation of H. polymorpha with high purity oxygen, the final cell densities and produced HSA concentrations were 24.6 g/L and 5.1 g/L in the 5-L fermentor, and 24.8 g/L and 4.5 g/L in the 30-L fermentor, respectively. These were about 2-10 times higher than those obtained in air-based fed-batch fermentations. The discrepancies between the 5-L and 30-L fermentors with air supply were presumably due to the higher contribution of surface aeration over submerged aeration in the 5-L fermentor. This study, therefore, proved the positive effect of high purity oxygen to enhance viable cell density as well as target recombinant protein production in microbial fermentations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4014/jmb.0909.09046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!