The novel swine-origin influenza A/H1N1 virus (S-OIV) first detected in April 2009 has been identified to transmit from human to human directly and is the cause of currently emerged pandemic. In this study, nucleotide and deduced amino acid sequences of hemagglutinin (HA) and neuraminidase (NA) of the S-OIV and other influenza A viruses were analyzed through bioinformatic tools for phylogenetic analysis, genetic recombination and point mutation to investigate the emergence and adaptation of the S-OIV in human. The phylogenetic analysis showed that the HA comes from triple reassortant influenza A/H1N2 and the NA from Eurasian swine influenza A/H1N1 indicating HA and NA to descend from different lineages during the genesis of the S-OIV. Recombination analysis nullified the possibility of occurrence of recombination in HA and NA denoting the role of reassortment in the outbreak. Several conservative mutations are observed in the amino acid sequences of the HA and NA and this mutated residues are identical in the S-OIV. The results reported herein suggested the notion that the recent pandemic is the result of reassortment of different genes from different lineages of two envelope proteins, HA and NA which are responsible for antigenic activity of virus. This study further suggests that the adaptive capability of the S-OIV in human is acquired by the unique mutations generated during emergence.

Download full-text PDF

Source
http://dx.doi.org/10.4014/jmb.1006.06031DOI Listing

Publication Analysis

Top Keywords

influenza a/h1n1
12
envelope proteins
8
amino acid
8
acid sequences
8
phylogenetic analysis
8
s-oiv human
8
s-oiv
6
influenza
5
proteins pertain
4
pertain evolution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!