In this paper we report on the synthesis and characterization of 1,4-benzene diamine (BDA) functionalized single walled carbon nanotubes linked to cobalt (II) tetracarboxy-phthalocyanine. The characterization of the conjugate was through UV-vis, FTIR and X-ray diffraction (XRD) spectroscopies and by transmission electron microscope (TEM) and electrochemical methods. The conjugate is used for the electrochemical characterization of diuron. The catalytic rate constant for diuron was 4.4×10(3)M(-1)s(-1) and the apparent electron transfer rate constant was 18.5×10(-6)cms(-1). The linear dynamic range was 1.0×10(-5)-2.0×10(-4)M, with a sensitivity of ∼0.42Amol(-1)Lcm(-2) and a limit of detection of 0.18μM using the 3δ notation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2010.10.057DOI Listing

Publication Analysis

Top Keywords

functionalized single
8
single walled
8
walled carbon
8
rate constant
8
electrochemical microscopic
4
microscopic spectroscopic
4
characterization
4
spectroscopic characterization
4
characterization benzene
4
benzene diamine
4

Similar Publications

Exploring the role of oxidative stress in carotid atherosclerosis: insights from transcriptomic data and single-cell sequencing combined with machine learning.

Biol Direct

January 2025

National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.

Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.

View Article and Find Full Text PDF

Reproducibility of peak force for isometric and isokinetic multi-joint leg extension exercise.

BMC Sports Sci Med Rehabil

January 2025

Training and Sports Sciences, University of Applied Sciences Wiener Neustadt, Johannes Gutenberg-Straße 3, Wiener Neustadt, 2700, Austria.

Background: Isokinetic dynamometry is a common tool for evaluating muscle function and is used across various disciplines. Technical advancements have shifted focus towards multi-joint exercises such as the leg press, offering insights into practical human movement dynamics. However, previous reproducibility studies have focused predominantly on single-joint exercises, warranting investigations into the reliability of multi-joint exercises.

View Article and Find Full Text PDF

Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states.

View Article and Find Full Text PDF

Hypertrophic scar (HS) is a common fibroproliferative disorders with no fully effective treatments. The conversion of fibroblasts to myofibroblasts is known to play a critical role in HS formation, making it essential to identify molecules that promote myofibroblast dedifferentiation and to elucidate their underlying mechanisms. In this study, we used comparative transcriptomics and single-cell sequencing to identify key molecules and pathways that mediate fibrosis and myofibroblast transdifferentiation.

View Article and Find Full Text PDF

The COVID-19 pandemic has underscored the importance of virus surveillance in public health and wastewater-based epidemiology (WBE) has emerged as a non-invasive, cost-effective method for monitoring SARS-CoV-2 and its variants at the community level. Unfortunately, current variant surveillance methods depend heavily on updated genomic databases with data derived from clinical samples, which can become less sensitive and representative as clinical testing and sequencing efforts decline.In this paper, we introduce HERCULES (High-throughput Epidemiological Reconstruction and Clustering for Uncovering Lineages from Environmental SARS-CoV-2), an unsupervised method that uses long-read sequencing of a single 1 Kb fragment of the Spike gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!