AI Article Synopsis

Article Abstract

Background And Objective: Inhaled particulate matter (PM) causes lung inflammation and epithelial dysfunction. However, the direct effect of PM on alveolar epithelial barrier integrity is not well understood. Our aim is to determine whether PM exposure affects the alveolar epithelial cells (AEC) transepithelial electrical conductance (Gt) and tight junction (TJ) proteins.

Methods: Human AEC (A549) and primary rat AEC were exposed to PM of <10 µm in size (PM(10) ) and diesel exhaust particles (DEP), using titanium dioxide (TiO(2) ) as a control for particle size effects. Gt and permeability to fluorescein isothiocyanate-dextran (FITC-Dextran) were measured to assess barrier integrity. TJ integrity was evaluated by analysing penetration of Lanthanum nitrate (La(3+) ) under transmission electron microscopy. Surface proteins were labelled with biotin and analysed by western blot. Immunofluorescence was performed to assess colocalization of TJ proteins including occludin and zonula occludens-1 (ZO-1). PM induced dissociation of occludin-ZO-1 was evaluated by co-immunoprecipitation.

Results: PM(10) and DEP increased Gt and disrupted TJ after 3 h of treatment. PM(10) and DEP induced occludin internalization from the plasma membrane into endosomal compartments and dissociation of occludin from ZO-1. Overexpression of antioxidant enzymes manganese superoxide dismutase (MnSOD) and catalase, prevented PM-induced Gt increase, occludin reduction from the plasma membrane and its dissociation from ZO-1.

Conclusions: PM induces alveolar epithelial dysfunction in part via occludin reduction at the plasma membrane and ZO-1 dissociation in AEC. Furthermore, these effects are prevented by overexpression of two different antioxidant enzymes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625061PMC
http://dx.doi.org/10.1111/j.1440-1843.2010.01910.xDOI Listing

Publication Analysis

Top Keywords

particulate matter
8
transepithelial electrical
8
electrical conductance
8
alveolar epithelial
8
ambient particulate
4
matter occludin
4
occludin distribution
4
distribution increases
4
increases alveolar
4
alveolar transepithelial
4

Similar Publications

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Relationship of modifiable risk factors with the incidence of thyroid cancer: a worldwide study.

BMC Res Notes

January 2025

Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.

Background: Thyroid cancer is one of the most common cancers of the endocrine system. The incidence of this cancer has increased in many countries. Many cases of thyroid cancer do not have any symptoms.

View Article and Find Full Text PDF

The superposition of heavy metals (HMs) from multiple anthropogenic sources in geochemical anomaly areas makes it difficult to discriminate prime sources in atmospheric HMs. This study utilized a combination of microscopic features, positive matrix factorisation, and Pb isotope fingerprints to trace the main sources of HMs bound to total suspended particulates (TSP) at a pollution site (Msoshui: MS) and control site (Lushan: LS) in northwestern Guizhou. The results reveal that the concentrations of Cd, Pb, Cr, As, Cu, Ni, and Zn in the TSP of LS are 3.

View Article and Find Full Text PDF

This paper proposes a hybridized model for air quality forecasting that combines the Support Vector Regression (SVR) method with Harris Hawks Optimization (HHO) called (HHO-SVR). The proposed HHO-SVR model utilizes five datasets from the environmental protection agency's Downscaler Model (DS) to predict Particulate Matter ([Formula: see text]) levels. In order to assess the efficacy of the suggested HHO-SVR forecasting model, we employ metrics such as Mean Absolute Percentage Error (MAPE), Average, Standard Deviation (SD), Best Fit, Worst Fit, and CPU time.

View Article and Find Full Text PDF

Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!