Aim: The aim of this study was to evaluate the accuracy, i.e. trueness (validity) and precision (repeatability) for load-dependent deflections in three dimensions of an implant-supported cantilever beam obtained with an optoelectronic motion analysis system compared with a well-known reference method.
Materials And Methods: A cantilever beam with a length of 22 mm (roughly corresponding to the width of two premolars) was screw-connected to an implant-abutment unit stiffly anchored in a steel plate. The positional changes of beam-end were measured when the beam-end step by step was subjected to four loads, 15.5-40.1 N. This measurement procedure was repeated to comprise six consecutive measurements. The trueness of the method was estimated by comparing the data obtained for vertical deflections with those from a reference method where a hydraulic test system was used to measure the load-deflection ratios of the same beam when subjected to the four mentioned vertical loads.
Results: All applied transducer-mediated loads had accuracies (truenesses and repeatabilities below 0.05%). Also, the trueness and precision of the reference method, regarding both movements (deflections) of tested objects and magnitude of applied loads, were tested and found to be high, not exceeding 0.5%. The optoelectronic method however underestimated the smallest vertical deflections for the cantilever beam when compared with the data obtained from the reference method. The underestimation was 26.4%, 15.5% and 8.6% for loads 15.5, 26.6 and 32.6 N, respectively, while there was a slight overestimation of 1.2% for 40.1 N. The precision for the optoelectronic method was found to be for z-axis 1.8 μm, y-axis 3.8 μm and x-axis 1.9 μm.
Conclusion: It can be concluded that the trueness (validity) for the optoelectronic method is very high for deflections above 143 μm. The precision (repeatability) of the optoelectronic method was found to be very high.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0501.2010.02014.x | DOI Listing |
Sci Rep
December 2024
Department of Physics, Indian Institute of Technology, Patna, 801106, Bihar, India.
A highly effective method for creating a supramolecular metallogel of Ni(II) ions (NiA-TA) has been developed in our work. This approach uses benzene-1,3,5-tricarboxylic acid as a low molecular weight gelator (LMWG) in DMF solvent. Rheological studies assessed the mechanical properties of the Ni(II)-metallogel, revealing its angular frequency response and thixotropic behaviour.
View Article and Find Full Text PDFNat Commun
December 2024
Nanophotonics Research Center, Institute of Microscale Optoelectronics, State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen, 51806, China.
Optical metrology with picometer-scale precision in three-dimensional space is of considerable importance in modern physics and state of the art technology, optical interference is an effective method, but techniques with rapid spatial variation have the potential to enhance measurement precision, which will be required as measurement dimensions decrease. Here, the concept of the vanishingly small optical phase singularity ruler is introduced. Inspired by the well-known plumb-line technique used to locate the centroid, an analogous singularity line technique is proposed to locate the optical singularity with a precision of ~4.
View Article and Find Full Text PDFSmall
December 2024
State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, 300072, China.
Developing miniaturized low-frequency acoustic sensors with high sensitivity is crucial for diverse applications, including geological monitoring and aerospace exploration. However, the performance of low-frequency acoustic sensor is constrained by the limited mechanical robustness of traditional sensing films at nanoscale thickness. Here, a functionalized graphene oxide (GO)-based Fabry-Perot (FP) low-frequency sensor is proposed, with characteristics of compact size, resistance to electromagnetic interference high-sensitivity low minimum detectable pressure (MDP), and a high signal-to-noise ratio (SNR).
View Article and Find Full Text PDFPsychol Res Behav Manag
December 2024
Department of Psychiatry, Sleep Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
Purpose: Network analysis is a statistical method that explores the complex interrelationships among variables by representing them as nodes and edges in a network structure. This study aimed to examine the interconnections between family functioning, anxiety, and depression among vocational school students through network analysis approach.
Participants And Methods: A sample of 2728 higher vocational school students participated in a survey utilizing the Family APGAR Index Questionnaire (APGAR), Generalized Anxiety Disorder Scale (GAD-7), and Patient Health Questionnaire (PHQ-9).
Nanotechnol Sci Appl
December 2024
Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland.
Purpose: Biofilms are one of the main threats related to bacteria. Owing to their complex structure, in which bacteria are embedded in the extracellular matrix, they are extremely challenging to eradicate, especially since they can inhabit both biotic and abiotic surfaces. This study aimed to create an effective antibiofilm nanofilm based on graphene oxide-metal nanoparticles (GOM-NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!