The thermal performances of nanocomposite layers formed by Single-walled Carbon Nanotubes (SWCNT) dispersed in 2 different kind of polydimethyl-siloxane (PDMSO) matrices has been investigated by measuring the thermal resistance under conditions similar to the ones used for thermal management in microelectronics. A series of nanocomposite samples with thickness in the range 25 microm(-1) cm have been tested. The nanocomposites were prepared varying the amounts of nanotubes embedded in the matrix (from 0.1 to 5%w). In some cases also microsized graphites were mixed to the nanotube's fillers. For 25 micron thick layers, the thermal resistance of the neat silicone specimen can be reduced of 54% with the addition of 2%w carbon nanotubes. The variation of thermal conductivity as a function of the SWCNT's loading is reported and discussed. Furthermore the dispersion's effects of the nanotubes in the layers and the effects on the realization of a net-like system have been investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2010.2663 | DOI Listing |
Adv Healthc Mater
January 2025
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
Burn care and treatment differ markedly from other types of wounds, as they are significantly more prone to infections and struggle to maintain fluid balance post-burn. Moreover, the limited self-healing abilities exacerbate the likelihood of scar formation, further complicating the recovery process. To tackle these issues, an asymmetric wound dressing comprising a quercetin-loaded poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB@Qu) hydrophilic layer and a zinc oxide nanoparticle-loaded, thermally treated polyvinylidene fluoride (HPVDF@ZnO) hydrophobic layer is designed.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Samsun University, 55420 Samsun, Turkey.
This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical Science and Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
Plants (Basel)
January 2025
AirTech UAV Solutions Inc., Inverary, ON K0H 1X0, Canada.
Grapevines are subjected to many physiological and environmental stresses that influence their vegetative and reproductive growth. Water stress, cold damage, and pathogen attacks are highly relevant stresses in many grape-growing regions. Precision viticulture can be used to determine and manage the spatial variation in grapevine health within a single vineyard block.
View Article and Find Full Text PDFMolecules
January 2025
Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!