A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identifying targets for intervention by analyzing basins of attraction. | LitMetric

Identifying targets for intervention by analyzing basins of attraction.

Pac Symp Biocomput

School of Computing, Informatics and Decision Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA.

Published: November 2013

Motivation: A grand challenge in the modeling of biological systems is the identification of key variables which can act as targets for intervention. Good intervention targets are the "key players" in a system and have significant influence over other variables; in other words, in the context of diseases such as cancer, targeting these variables with treatments and interventions will provide the greatest effects because of their direct and indirect control over other parts of the system. Boolean networks are among the simplest of models, yet they have been shown to adequately model many of the complex dynamics of biological systems. Often ignored in the Boolean network model, however, are the so called basins of attraction. As the attractor states alone have been shown to correspond to cellular phenotypes, it is logical to ask which variables are most responsible for triggering a path through a basin to a particular attractor.

Results: This work claims that logic minimization (i.e. classical circuit design) of the collections of states in Boolean network basins of attraction reveals key players in the network. Furthermore, we claim that the key players identified by this method are often excellent targets for intervention given a network modeling a biological system, and more importantly, that the key players identified are not apparent from the attractor states alone, from existing Boolean network measures, or from other network measurements. We demonstrate these claims with a well-studied yeast cell cycle network and with a WNT5A network for melanoma, computationally predicted from gene expression data.

Download full-text PDF

Source
http://dx.doi.org/10.1142/9789814335058_0036DOI Listing

Publication Analysis

Top Keywords

targets intervention
12
basins attraction
12
boolean network
12
key players
12
modeling biological
8
biological systems
8
network
8
attractor states
8
players identified
8
identifying targets
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!