A cost- and time-efficient means to define the prognosis of patients with chronic lymphocytic leukemia (CLL) is desirable but does not yet exist. On the basis of the evidence that CLL cells have enhanced expression of the cyclic nucleotide phosphodiesterase isoform 7B (PDE7B), we hypothesized that PDE7B expression might provide such information. We assessed PDE7B mRNA expression using quantitative real-time PCR in peripheral blood mononuclear cells isolated from 85 patients and 30 normal subjects. We compared PDE7B mRNA expression with that of other disease features to determine if its expression correlates with the prognosis of patients with CLL. We found that CLL patients with PDE7B mRNA levels in the top quartile (greater than ninefold elevation relative to normal controls) have a several-year shorter median time-to-treatment (TTT, 36 months) compared to that of patients whose CLL cells express lower levels of PDE7B mRNA (TTT, 77 months, p=0.001). High PDE7B mRNA expression correlates with expression of zeta-chain-associated protein kinase 70 (ZAP-70), unmutated immunoglobulin heavy chain variable (IGHV) region genes and β2 microglobulin (β2M), but use of a multivariate Cox model revealed that high PDE7B mRNA expression independently predicts a short TTT, even after adjusting for several other disease characteristics (ZAP-70 or CD38 expression, IGHV mutation status and Rai status). High expression of PDE7B is an unfavorable characteristic in CLL. Assessment of PDE7B mRNA expression thus appears to be a clinically useful biomarker to define the prognosis of patients with CLL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111850 | PMC |
http://dx.doi.org/10.1002/ijc.25785 | DOI Listing |
Front Genet
February 2023
Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, China.
Idiopathic pulmonary fibrosis (IPF) is a fatal and irreversible interstitial lung disease. The specific mechanisms involved in the pathogenesis of IPF are not fully understood, while metabolic dysregulation has recently been demonstrated to contribute to IPF. This study aims to identify key metabolism-related genes involved in the progression of IPF, providing new insights into the pathogenesis of IPF.
View Article and Find Full Text PDFOpen Life Sci
March 2021
Department Emergency, Taizhou First People's Hospital, No. 218 Hengjie Road, Huangyan District, Taizhou, Zhejiang, 318020, China.
Background: Emerging evidence has shown that circular RNAs (circRNAs) are vital regulators in osteosarcoma (OS) progression. However, the effects of circ_WWC3 in OS have not been explored. In this research, the functions and mechanisms of circ_WWC3 in OS were investigated.
View Article and Find Full Text PDFFront Genet
August 2020
Department of Urology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Background: Prostate cancer (PCa) is one of the most common malignant tumors worldwide. Accumulating evidence has suggested that circular RNAs (circRNAs) are involved in the development and progression of various cancers, and they show great potential as novel biomarkers. However, the underlying mechanisms and specific functions of most circRNAs in PCa remain unknown.
View Article and Find Full Text PDFNeurochem Int
July 2020
Dart NeuroScience LLC, 12278 Scripps Summit Drive, San Diego, CA, 92131, United States.
Phosphodiesterase 7B (PDE7B) inhibition has been considered as a therapeutic target for the treatment of several neurological disorders. Currently, there are no radio-labeled tracers available to determine receptor occupancy (RO) of this target. Developing such a tracer could greatly facilitate the identification of viable PDE7B inhibitors.
View Article and Find Full Text PDFOncogene
February 2019
Institute of Interdisciplinary Integrative Medical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
Members of microRNA-200 (miRNA-200) family have a regulatory role in epithelial to mesenchymal transition (EMT) by suppressing Zeb1 and Zeb2 expression. Consistent with its role in suppressing EMT, Hsa-miR-200c-3p (miR-200c), a member of miR-200 family is poorly expressed in mesenchymal-like triple-negative breast cancer (TNBC) cells and ectopic miR-200c expression suppresses cell migration. In this study, we demonstrated that miR-200c potently inhibited TNBC cell growth and tumor development in a mechanism distinct from its ability to downregulate Zeb1 and Zeb2 expression, because silencing them only marginally affected TNBC cell growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!