To investigate the effects of open dentinal tubules on the morphological and functional characteristics of dental pulp cells. Morphological changes in human dental pulp cells that were seeded onto dentin discs with open dentinal tubules were investigated on days 1, 2, 4, and 10 of culture using scanning electron microscopy and fluorescence microscopy. Samples collected on days 1, 3, 6, 8, and 10 of culture were evaluated for cell proliferation rate and alkaline phosphatase activity. Cultured human dental pulp cells developed a columnar or polygonal morphology and monopolar cytoplasmic processes that extended into the dentinal tubules. The cells formed a multilayer and secreted an extracellular matrix onto the cell surface. Scanning electron microscopy and fluorescence microscopy revealed polarized organization of odontoblasts. Cells seeded onto dentin discs proliferated minimally but showed high levels of ALP activity. Dental pulp cells seeded onto treated dentin discs develop an odontoblastlike phenotype, which may be a potential alternative for use in experimental research on dentinogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906866PMC
http://dx.doi.org/10.1007/s10059-011-0010-1DOI Listing

Publication Analysis

Top Keywords

dental pulp
20
pulp cells
20
dentinal tubules
16
open dentinal
12
cells seeded
12
dentin discs
12
human dental
8
seeded dentin
8
days culture
8
scanning electron
8

Similar Publications

Renal tubular acidosis (RTA) is a group of disorders in which there is an alteration in acid-base homeostasis because of the impairment of nephrons to excrete hydrogen ions or reabsorb bicarbonate ions, resulting in chronic metabolic acidosis. RTA is an important cause of rickets, particularly 'resistant rickets'. Dental manifestations frequently reported in patients with RTA include enamel hypoplasia and amelogenesis imperfecta, affecting permanent dentition.

View Article and Find Full Text PDF

Dental caries causes mineral loss and organic damage to teeth. Understanding caries and dentin pulp reactions is crucial for effective caries management strategies. There is a lack of knowledge regarding the microscopic and ultramicroscopic changes that occur during caries destruction and reactive changes.

View Article and Find Full Text PDF

Aim: 3D-printed scaffolds loaded with healing directed agents could be employed for better treatment outcome in regenerative dentistry. The aim of this study was to fabricate and characterize simple 3D-printed poly lactic acid (PLA) scaffolds coated with nanoHydroxyapatite (nHA), Naringin (NAR), or their combination, and testing their morphological, chemical, mechanical, antibacterial, biocompatible and bioactive properties.

Methodology: Two variants pore sizes, 300 and 700 μm, of 3D-printed PLA disc scaffolds measuring (10 × 1 mm) were fabricated.

View Article and Find Full Text PDF

Objectives: This study aimed to compare the marginal adaptation of a cold ceramic (CC) sealer with the single-cone obturation technique with that of an AH-26 sealer with the lateral compaction technique in single-canal teeth.

Materials And Methods: In this in vitro experimental study, the root canals of 24 extracted single-rooted single-canal teeth were instrumented to F3 files by the crown-down technique and randomly assigned to 2 groups (n = 12). The root canals were obturated with a CC sealer and single-cone obturation technique with 4% gutta-percha in group 1 and with an AH-26 sealer and lateral compaction technique with 2% gutta-percha in group 2.

View Article and Find Full Text PDF

Objectives: This study evaluates the effect of different irrigation solutions for postoperative pain in the regenerative endodontic treatments (RET) of necrotic teeth with open apex.

Materials And Methods: This study included necrotic, deeply carious lower molars of 42 patients. Access cavities of the teeth were opened and working lengths were measured at the first visit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!