We found that the active tension of C2C12 myotubes that had been subjected to artificial exercise for ~10 days decreased rapidly after termination of the artificial exercise. When differentiated C2C12 myotubes were subjected to continuous 1 Hz artificial exercise for ~10 days, the active tension increased to ~4× compared to that before application of the artificial exercise, as reported previously. On termination of artificial exercise, the active tension decreased rapidly, the level reaching that before application of the artificial exercise within 8 h. Concomitant with the decrease in the active tension, an increase in the amount of ubiquitinated proteins was observed. Real time RT-PCR revealed that the expression of several genes associated with atrophy, namely Smc6, Vegfa, Jarid2, Kitl, Cds2, Inmt, Fasn, Neurl, Topors, and Cul2, were also changed after termination of artificial exercise. These results indicate that termination of artificial exercise induced atrophy-like responses of C2C12 myotubes. Here we found that during the decrease in active tension, the sarcomere structure, especially the thin filament structure, decayed rapidly after termination of artificial exercise. On reapplication of the artificial exercise, the active tension was restored rapidly, within 8 h, concomitant with reformation of the sarcomere structure. These results indicate that disassembly of the sarcomere structure may be one of the reasons for the active tension decrease during disuse muscle atrophy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10974-010-9230-9 | DOI Listing |
JMIR Mhealth Uhealth
January 2025
Ludwig Boltzmann Institute for Digital Health and Prevention, Salzburg, Austria.
Background: There has been a surge in the development of apps that aim to improve health, physical activity (PA), and well-being through behavior change. These apps often focus on creating a long-term and sustainable impact on the user. Just-in-time adaptive interventions (JITAIs) that are based on passive sensing of the user's current context (eg, via smartphones and wearables) have been devised to enhance the effectiveness of these apps and foster PA.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Pulmonary Medicine, Istanbul Oncology Hospital, Istanbul 34846, Türkiye.
We aimed to describe the cardiopulmonary function during exercise and the health-related quality of life (HRQoL) in patients with a history of COVID-19 pneumonia, stratified by chest computed tomography (CT) findings at baseline. Among 77 consecutive patients with COVID-19 who were discharged from the Pulmonology Ward between March 2020 and April 2021, 28 (mean age 54.3 ± 8.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
Centre of Research, Education, Innovation and Intervention in Sport and Porto Biomechanics Laboratory, Faculty of Sport, University of Porto, 4200-450 Porto, Portugal.
We have examined the impact of CrossFit workout sessions on physical fitness, comparing the obtained outcomes with the recommendations of the American College of Sports Medicine. In addition, we provide suggestions to improve training monitoring, as well as practical applications for researchers, coaches and practitioners. CrossFit imposes high cardiorespiratory and metabolic demands, promoting improvements in circulatory capacity, oxidative metabolism and muscular endurance.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Computer Science and Technology, University of Science and Technology of China, Hefei, China; State Key Laboratory of Cognitive Intelligence, Hefei, China. Electronic address:
Knowledge tracing (KT) estimates students' mastery of knowledge concepts or skills by analyzing their historical interactions. Although general KT methods have effectively assessed students' knowledge states, specific measurements of students' programming skills remain insufficient. Existing studies mainly rely on exercise outcomes and do not fully utilize behavioral data during the programming process.
View Article and Find Full Text PDFJ Pers Med
January 2025
Bruyère Research Institute, University of Ottawa, Ottawa, ON K1N 5C7, Canada.
: Artificial intelligence (AI) is transforming healthcare by enhancing diagnostic accuracy, treatment, and patient monitoring, benefiting older adults by offering personalized care plans. AI-powered tools help manage chronic conditions and maintain independence, making them a valuable asset in addressing aging challenges. : The objectives are as follows: 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!