Introduction: Hypophosphatemic rickets represents a group of heritable renal disorders of phosphate characterized by hypophosphatemia, normal or low serum 1,25 (OH)2 vitamin D and calcium levels. Hypophosphatemia is associated to interglobular dentine and an enlarged pulp chambers.
Aim: Our goal was to verify the dental abnormalities and the oral health condition in these patients.
Material And Methods: Prospective study of oral conditions in patients with Hypophosphatemic rickets. This report employed a simple method to be easily reproducible: oral clinical exam and radiographic evaluation.
Results: Fourteen patients were studied, 5 males, median age of 11 years (4 to 26). Occlusion defects (85,7%) and enamel hypoplasia (57,1%) were significant more frequently than dental abscesses (one patient). We observed enlarged pulp chambers in 43% of the patients and hypoplasia and dentin abnormalities in 14,3%. We could not detect a significant correlation between dental abnormalities and delayed treatment (p > 0,05). DMFT index for 6 to 12 years patients (n = 12) showed that the oral health is unsatisfactory (mean DMFT = 5).
Conclusions: Patients with Hypophosphatemic Rickets frequently present dental alterations and these are not completely recovered with the treatment, unless dental abscess and they need a periodical oral examination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2972601 | PMC |
http://dx.doi.org/10.1590/s1807-59322010001000017 | DOI Listing |
Diagnostics (Basel)
January 2025
Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Ciudad de México 14389, Mexico.
Background/objectives: X-linked hypophosphataemic rickets (XLH) represents the most frequent type of rickets from genetic origin, it is caused by mutations on the gene. The main clinical manifestations are short stature and bone deformities. Phenotype variation is observed at the intrafamily and interfamily level.
View Article and Find Full Text PDFBMJ Case Rep
January 2025
Pediatrics, Lokmanya Tilak Municipal General Hospital and Lokmanya Tilak Municipal Medical College, Mumbai, Maharashtra, India.
Rickets in children usually present with skeletal manifestations. However, they can also rarely present with extraskeletal manifestations, one of them being respiratory insufficiency. We present an unusual case of a girl in early childhood with respiratory insufficiency, which turned out to be due to the underlying vitamin D-dependent rickets (VDDR).
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Department of Paediatric Endocrinology, Alder Hey Children's Hospital, Liverpool, UK.
Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is an uncommon hereditary form of rickets characterised by chronic renal phosphate loss and impaired bone mineralisation. This results from compound heterozygous or homozygous pathogenic variants in ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), a key producer of extracellular inorganic pyrophosphate (PPi) and an inhibitor of fibroblast growth factor23 (FGF23). ENPP1 deficiency impacts FGF23 and increases its activity.
View Article and Find Full Text PDFBMC Mol Cell Biol
January 2025
Department of Stomatology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, China.
Background: Inactivation or mutations of FAM20C causes human Raine Syndrome, which manifests as lethal osteosclerosis bone dysplasia or non-lethal hypophosphatemia rickets. However, it is only hypophosphatemia rickets that was reported in the mice with Fam20c deletion or mutations. To further investigate the local and global impacts of Fam20c mutation, we constructed a knock-in allele carrying Fam20c mutation (D446N) found in the non-lethal Raine Syndrome.
View Article and Find Full Text PDFJ Bone Miner Res
December 2024
Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
Duan X, et al, report that CYP4A22 loss-of-function causes a new form of vitamin D-dependent rickets. Here we describe the basis for our rejection of their proposal and provide evidence that the CYP4A22 variant that they have identified (c.901del, p.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!