Insects are equipped with various types of antennal sensilla, which house thermosensitive neurons adapted to receive different parameters of the thermal environment for a variety of temperature-guided behaviors. In the leaf-cutting ant Atta vollenweideri, the physiology and the morphology of the thermosensitive sensillum coeloconicum (Sc) has been thoroughly investigated. However, the central projections of its receptor neurons are unknown. Here we selectively stained the three neurons found in single Sc and tracked their axons into the brain of Atta vollenweideri workers. Each of the three axons terminates in a single glomerulus of the antennal lobe (Sc-glomeruli). Two of the innervated glomeruli are adjacent to each other and are located laterally, while the third one is clearly separated and located medially in the antennal lobe. Using two-photon Ca(2+) imaging of antennal lobe projection neurons, we studied where in the antennal lobe thermal information is represented. In the 11 investigated antennal lobes, we found up to 10 different glomeruli in a single specimen responding to temperature stimulation. Both, warm- and cold-sensitive glomeruli could be identified. The thermosensitive glomeruli were mainly located in the medial part of the antennal lobe. Based on the general representation of thermal information in the antennal lobe and functional data on the Sc-glomeruli we conclude that temperature stimuli received by Sc are processed in the medial of the three target glomeruli. The present study reveals an important role of the antennal lobe in temperature processing and links a specific thermosensitive neuron to its central target glomerulus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991144 | PMC |
http://dx.doi.org/10.3389/fnbeh.2010.00174 | DOI Listing |
Cell Tissue Res
January 2025
Research Institute for Electronic Science, Hokkaido University, Sapporo, 060-0812, Japan.
The smoky brown cockroach, Periplaneta fuliginosa, is a peridomestic pest inhabiting broad regions of the world from temperate to subtropical zones. In common with other related species such as the American cockroach, Periplaneta americana, female-emitted sex pheromone components, named periplanones, are known to be key volatiles that elicit long-range attraction and courtship rituals in males. How periplanones are processed in the nervous system has been entirely unexplored in P.
View Article and Find Full Text PDFCurr Opin Insect Sci
November 2024
Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India. Electronic address:
Odors serve as important cues for many behaviors in mosquitoes, including host-seeking, foraging, and oviposition. They are detected by olfactory receptor neurons present in the sensory organs, whose axons take this signal to the antennal lobe, the first olfactory processing center in the insect brain. We review the organization and the functioning of the antennal lobe in mosquitoes, focusing on two populations of interneurons present there: the local neurons (LNs) and the projection neurons (PNs).
View Article and Find Full Text PDFiScience
November 2024
VIB - KU Leuven Center for Microbiology, Gaston Geenslaan 1, 3001 Leuven, Belgium.
Front Physiol
October 2024
Department of Computer and Information Science, Fordham University, New York, NY, United States.
Associative memory in the Mushroom Body of the fruit fly brain depends on the encoding and processing of odorants in the first three stages of the Early Olfactory System: the Antenna, the Antennal Lobe and the Mushroom Body Calyx. The Kenyon Cells (KCs) of the Calyx provide the Mushroom Body compartments the identity of pure and odorant mixtures encoded as a train of spikes. Characterizing the code underlying the KC spike trains is a major challenge in neuroscience.
View Article and Find Full Text PDFGenome Biol Evol
October 2024
School of Biological Sciences, Bristol University, 24 Tyndall Ave, Bristol BS8 1TQ, UK.
The olfactory sense is crucial for organisms, facilitating environmental recognition and interindividual communication. Ithomiini butterflies exemplify this importance not only because they rely strongly on olfactory cues for both inter- and intra-sexual behaviors, but also because they show convergent evolution of specialized structures within the antennal lobe, called macroglomerular complexes (MGCs). These structures, widely absent in butterflies, are present in moths where they enable heightened sensitivity to, and integration of, information from various types of pheromones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!