AI Article Synopsis

  • The export of silicon (Si) from land to coastal zones is crucial for the ocean's carbon sink and phytoplankton blooms.
  • Human activities, particularly long-term cultivation of formerly forested areas, significantly reduce Si delivery to watersheds by two to three times.
  • This research highlights the need to consider human impact on land use when modeling the terrestrial Si cycle, marking a key advancement in understanding biogeochemical processes.

Article Abstract

Continental export of Si to the coastal zone is closely linked to the ocean carbon sink and to the dynamics of phytoplankton blooms in coastal ecosystems. Presently, however, the impact of human cultivation of the landscape on terrestrial Si fluxes remains unquantified and is not incorporated in models for terrestrial Si mobilization. In this paper, we show that land use is the most important controlling factor of Si mobilization in temperate European watersheds, with sustained cultivation (>250 years) of formerly forested areas leading to a twofold to threefold decrease in baseflow delivery of Si. This is a breakthrough in our understanding of the biogeochemical Si cycle: it shows that human cultivation of the landscape should be recognized as an important controlling factor of terrestrial Si fluxes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncomms1128DOI Listing

Publication Analysis

Top Keywords

human cultivation
8
cultivation landscape
8
terrestrial fluxes
8
controlling factor
8
historical land
4
land change
4
change lowered
4
terrestrial
4
lowered terrestrial
4
terrestrial silica
4

Similar Publications

Morphological variation of Ficus johannis subsp. afghanistanica (Warb.) Browicz in Sistan-va-Baluchestan province, Iran.

BMC Plant Biol

January 2025

Republic of Türkiye, Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Hatay Olive Research Institute Directorate, Hassa Station, Hassa, 31700, Hatay, Türkiye.

Background: Ficus johannis subsp. afghanistanica (Warb.) Browicz is an important plant species belonging to the Moraceae family and is part of the Ficus genus.

View Article and Find Full Text PDF

Seasonal monitoring of forage C:N:ADF ratio in natural rangeland using remote sensing data.

Environ Monit Assess

January 2025

Department of Plant and Soil Sciences, University of Pretoria, Hatfield, 0001, Pretoria, South Africa.

In recent decades, natural rangelands have emerged as vital sources of livelihood and ecological services, particularly in Southern Africa, supporting communities in developing regions. However, the escalating global demand for food, driven by a growing human population, has led to the extensive expansion of cultivated areas, resulting in continuous nutrient leaching in rangelands. To ensure the long-term viability of these ecosystems, there is a need to develop effective approaches for managing and monitoring the seasonality of forage quality.

View Article and Find Full Text PDF

MAIT cells modulating the oral lichen planus immune microenvironment: a cellular crosstalk perspective.

Inflamm Res

January 2025

Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.

Mucosal-associated invariant T (MAIT) cells, a type of T lymphocytes with innate-like characteristics, are crucial in bridging innate and adaptive immunity. When activated, MAIT cells release various inflammatory molecules and swiftly respond to antigens. Notably, numerous studies highlight the significant impact of MAIT cells on tumors and various immune disorders by influencing the immune microenvironment.

View Article and Find Full Text PDF

Abnormal ac4C modification in metabolic dysfunction associated steatotic liver cells.

Sci Rep

January 2025

Department of Pharmacy, Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, 610014, China.

The pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) remains unclear due to the complexity of its etiology. The emerging field of the epitranscriptome has shown significant promise in advancing the understanding of disease pathogenesis and developing new therapeutic approaches. Recent research has demonstrated that N4-acetylcytosine (ac4C), an RNA modification within the epitranscriptome, is implicated in progression of various diseases.

View Article and Find Full Text PDF

Background: Traditional Chinese medicine (TCM) is a valuable resource for drug discovery and has demonstrated excellent efficacy in treating inflammatory diseases. This study aimed to develop a universal gene signature-based strategy for high-throughput discovery of anti-inflammatory drugs, especially Traditional Chinese medicine (TCM).

Methods: The disease gene signature of liposaccharide-stimulated THP-1 cells and drug gene signatures of 655 drug candidates were established via sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!