Purpose: The purpose of this prospective study was to evaluate the clinical outcome of implants immediately placed into fresh extraction sockets for the replacement of endodontically treated teeth with signs of vertical root fracture.
Material: Sixteen partially edentulous patients, with 1 tooth scheduled for extraction and showing clinical signs and symptoms and/or radiological evidence of vertical root fracture, were included in the study. Sixteen transmucosal implants were installed immediately after extraction and careful debridement. The gap between the implant surface and the socket walls was filled using synthetic bone grafting cement. Prosthetic phase occurred 3 to 4 months after surgery. Implant success and survival and radiographic bone loss were evaluated after 1 year of function. Patient satisfaction for mastication function, phonetics, and aesthetics was also assessed by means of a questionnaire.
Results: No implant failure occurred. The overall implant success and survival was 100% at 1 year. The mean follow-up was 13.5 months. All prostheses were successful. Periimplant bone loss after 1 year averaged 0.48 ± 0.20 mm. All patients reported full satisfaction for mastication function, phonetics, and aesthetics.
Conclusions: The use of a synthetic bone grafting cement in combination with immediate implant placement procedure can be considered a safe, effective, and predictable treatment option for the rehabilitation of fresh postextraction sockets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/ID.0b013e3181fce080 | DOI Listing |
Cureus
December 2024
Department of Periodontics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, IND.
The field of periodontal regeneration focuses on restoring the form and function of periodontal tissues compromised due to diseases affecting the supporting structures of teeth. Biomaterials have emerged as a vital component in periodontal regenerative therapy, offering a variety of properties that enhance cellular interactions, promote healing, and support tissue reconstruction. This review explores current advances in biomaterials for periodontal regeneration, including ceramics, polymers, and composite scaffolds, and their integration with biological agents like growth factors and stem cells.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, People's Republic of China.
Background: It is well established that the interaction between osteogenesis and inflammation can impact bone tissue regeneration. The use of nanoparticles to treat and alleviate inflammation at the molecular level has the potential to improve the osteogenic microenvironment and serve as a therapeutic approach.
Methods: We have synthesized new hollow cerium oxide nanoparticles and doped with cathepsin B inhibitor (CA-074Me) to create novel CeO@CA-074Me NPs.
Int J Mol Sci
December 2024
Department of Biology, School of Medicine, State University of Rio de Janeiro, Professor Manuel de Abreu, 444, Avenue, Rio de Janeiro 20550-170, Brazil.
It was assumed that only autogenous bone had appropriate osteoconductive and osteoindutive properties for bone regeneration, but this assumption has been challenged. Many studies have shown that synthetic biomaterials must be considered as the best choice for guided bone regeneration. The objective of this work is to compare the performances of nanohydroxyapatite/β-tricalcium phosphate (n-HA/β-TCP) composite and autogenous bone grafting in bone regeneration applications.
View Article and Find Full Text PDFMolecules
December 2024
Department of Biology Education, Daegu University, 201, Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea.
Cathepsin K plays a pivotal role in bone resorption and has emerged as a prominent therapeutic target for treating bone-related diseases such as osteoporosis. Despite significant advances in synthetic inhibitor development, none have achieved FDA approval due to safety and efficacy challenges. This review highlights the potential of phytochemicals as alternative inhibitors, emphasizing their natural origin, structural diversity, and minimal adverse effects.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Division, Biomedical Technology Wing, 695011, Thiruvananthapuram, INDIA.
A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!