This review focuses on muscle disorders and diseases caused by defects in the Ca(2+) release channels of the sarcoplasmic reticulum, the ryanodine receptors, and in the luminal, low affinity, high capacity Ca(2+)-binding proteins, calsequestrins. It provides a time line over the past half century of the highlights of research on malignant hyperthermia (MH), central core disease (CCD) and catecholaminergic polymorphic ventricular tachycardia (CPVT), that resulted in the identification of the ryanodine receptor (RYR), calsequestrin (CASQ) and dihydropyridine receptor (CACNA1S) genes as sites of disease-causing mutations. This is followed by a description of approaches to functional analysis of the effects of disease-causing mutations on protein function, focusing on studies of how mutations affect spontaneous (store overload-induced) Ca(2+)-release from the sarcoplasmic reticulum, the underlying cause of MH and CPVT. Subsequent sections describe results obtained by analysis of knockin mouse lines carrying MH- and CCD-causing mutations, including a Casq1 knockout. The review concludes with the presentation of two mechanistic models. The first shows how dysregulation of Ca(2+) homeostasis can lead to muscle diseases involving both RyR and Casq proteins. The second describes a theory of central core formation wherein non-uniformity of Ca(2+) release, resulting in non-uniformity of muscle contraction, is presented as an intrinsic property of the specific tertiary structure of mutant heterotetrameric ryanodine receptors and as the underlying cause of core formation in skeletal muscle. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamcr.2010.11.009 | DOI Listing |
Scand J Med Sci Sports
January 2025
Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
While acute exercise affects sarcoplasmic reticulum (SR) function, the impact of resistance training remains unclear. The purpose of the present study was to investigate SR Ca handling plasticity in response to moderate- and high-volume strength training in elite rowers. Twenty elite male (n = 12) and female (n = 8) rowers performed three weekly strength training sessions for 8 weeks and were randomly allocated to either perform 3 sets (3-SET) or progressive increase from 5 to 10 sets (10-SET) of 10 repetitions during the training period.
View Article and Find Full Text PDFFront Med
January 2025
Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM.
View Article and Find Full Text PDFInt J Mol Med
March 2025
Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Structural Birth Defect and Reconstruction, Chongqing 400014, P.R. China.
Sepsis is often a cause of mortality in patients admitted to the intensive care unit. Notably, the heart is the organ most susceptible to the impact of sepsis and this condition is referred to as sepsis‑induced cardiomyopathy (SIC). Low triiodothyronine (T3) syndrome frequently occurs in patients with sepsis, and the heart is one of the most important target organs for the action of T3.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cardiovascular Sciences, Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester, United Kingdom.
Sustained pathologic myocardial hypertrophy can result in heart failure(HF); a significant health issue affecting a large section of the population worldwide. In HF there is a marked elevation in circulating levels of the peptide urotensin II(UII) but it is unclear whether this is a result of hypertrophy or whether the high levels contribute to the development of hypertrophy. The aim of this study is to investigate a role of UII and its receptor UT in the development of cardiac hypertrophy and the signalling molecules involved.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA.
Rippling Muscle Disease (RMD) is a rare skeletal myopathy characterized by abnormal muscular excitability manifesting with wave-like muscle contractions and percussion-induced muscle mounding. Hereditary RMD is associated with caveolin-3 or cavin-1 mutations. Recently, we identified cavin 4 autoantibodies as a biomarker of immune-mediated RMD (iRMD), though the underlying disease-mechanisms remain poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!