In the present study, Gambogenic acid exhibits potential anti-tumor activity in several cancer cell lines. However, Gambogenic acid-induced apoptosis mechanism is not well understood. Here, we report that Gambogenic acid was capable to induce CNE-1 cells apoptosis and caused mitochondrial and endoplasmic reticulum injury, analyzed via transmission electron microscopy and acridine orange/ethidium bromide (AO/EB) double staining. To quantitatively analyze apoptosis, through the propidium iodide (PI)/Annexin V-FITC double staining to detect cell apoptosis, PI staining of the cell cycle distribution. To further explore the potential mechanism of Gambogenic acid mediated apoptosis in CNE-1 cells, we also examined mitochondrial oxidative stress in the levels of reactive oxygen species, the release of cytochrome c, intracellular Ca(2+) concentration and mitochondrial membrane potential by flow cytometry. Moreover, Gambogenic acid could result in a time and concentration-dependent decrease in Phospho-Akt expression, basal expression levels of Akt change was not obvious, In addition, we detected Bcl-2 family including Bcl-2, Bax and Bad expression in mRNA level. This resulted in a decrease of Bcl-2 and Bad increased in CNE-1 cells after Gambogenic acid treatment. Overall, our results indicated that Gambogenic acid mediated apoptosis through inactivation of Akt, accompanied with mitochondrial oxidative stress and cross-talk with Bcl-2 family in the process of apoptosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2010.11.018 | DOI Listing |
Anal Biochem
December 2024
Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China; Laboratory of Food Nutrition and Clinical Research, Institute of Seafood, Zhejiang Gongshang University, Hangzhou, 310012, China. Electronic address:
Gamboge exhibits anti-colorectal cancer (CRC) activity, however, its active compounds and the underlying mechanisms remain unclear. Herein, a liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method for determining gambogellic acid, β-morellic acid, isogambogenic acid, gambogenic acid, R-gambogic acid, S-gambogic acid, and hydroxygambogic acid in gamboge was established. The key parameters including ion transitions, voltages, LOD, and LOQ were determined, with LOD ranging from 0.
View Article and Find Full Text PDFCancer Biol Ther
December 2024
Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
The development of an effective treatment for myelodysplastic syndrome (MDS) is needed due to the insufficient efficacy of current therapies. Gambogenic acid (GNA) is a xanthone constituent of gamboge, a resin secreted by Hook. f.
View Article and Find Full Text PDFCell Adh Migr
December 2024
Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
Chin J Nat Med
July 2024
Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China; Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei University of Medicine, Shiyan 442000, China. Electronic address:
Gambogenic acid (GNA), a bioactive compound derived from the resin of Garcinia hanburyi, has demonstrated significant antitumor properties. However, its mechanisms of action in oral squamous cell carcinoma (OSCC) remain largely unclear. This study aimed to elucidate the apoptotic effects of GNA on OSCC cell lines CAL-27 and SCC-15.
View Article and Find Full Text PDFInt J Pharm
July 2024
Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China; Key Laboratory of Xin'an Medicine, the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, China. Electronic address:
Although the combination of anti-vascular strategy plus immunotherapy has emerged as the optimal first-line treatment of hepatocellular carcinoma, lack of tumor targeting leads to low antitumor efficacy and serious side effect. Here, we report an ultra-pH-sensitive nanoparticle of gambogenic acid (GNA) encapsulated by poly(ethylene glycol)-poly(2-azepane ethyl methacrylate) (PEG-PAEMA) for tumor-targeting combined therapy of anti-vascular strategy plus immunotherapy. PEG-PAEMA-GNA nanoparticle was quite stable at pH 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!