Soft, transparent and mechanically tough nanocomposite (M-NC) films composed of poly(2-methoxyethyl acrylate) (PMEA) and inorganic clay (hectorite) were studied as substrates for a living cell harvest system. It was found that five cell types could all be cultivated to confluence on the surface of M-NC n films with clay content (n = 10-23 wt%), although the cells hardly cultivated on the surface of chemically-cross-linked PMEA and linear PMEA films. Further, it was found that the cells cultured on the surfaces of M-NC films can be detached, without any enzymatic digestion, by decreasing the medium temperature and/or simultaneously using gentle pipetting. The detached cell was obtained as a single cell or a contiguous cell sheet, both of which were viable and recultured. From the compositions and surface properties, it was estimated that the cell culture and subsequent cell detachment were attributed to the unique PMEA/clay network. The new soft nanocomposite is potentially a very promising substrate for tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1163/092050610X540459DOI Listing

Publication Analysis

Top Keywords

m-nc films
12
poly2-methoxyethyl acrylate
8
cell
7
films
5
thermoresponsible cell
4
cell adhesion/detachment
4
adhesion/detachment transparent
4
transparent nanocomposite
4
nanocomposite films
4
films consisting
4

Similar Publications

Soft, transparent and mechanically tough nanocomposite (M-NC) films composed of poly(2-methoxyethyl acrylate) (PMEA) and inorganic clay (hectorite) were studied as substrates for a living cell harvest system. It was found that five cell types could all be cultivated to confluence on the surface of M-NC n films with clay content (n = 10-23 wt%), although the cells hardly cultivated on the surface of chemically-cross-linked PMEA and linear PMEA films. Further, it was found that the cells cultured on the surfaces of M-NC films can be detached, without any enzymatic digestion, by decreasing the medium temperature and/or simultaneously using gentle pipetting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!