The increase of observations and computational capabilities favoured the numerical simulation of microstructure to derive the effective properties of materials. Indeed, the multiscale approaches, that use homogenization techniques, enable us to estimate or to give bounds of the overall properties of heterogeneous media. In this work, the objective is to develop a three-dimensional mathematical model of the morphology of the microstructure of rubber composite containing carbon black nano-fillers. This multiscale model consists of a combination of some primary models that correspond to the physical scales of the microstructure. It is identified according to an original method that uses statistical moments from experimental transmission electronic microscope (TEM) image data and from numerical TEM simulations. This method leads to three-dimensional representative simulations of microstructures that take the complex clustering effect of particles in aggregates, into account. Finally, the identified model of the morphology satisfies the experimental percolation rate of the carbon black aggregates in the material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2818.2010.03428.x | DOI Listing |
Environ Res
January 2025
Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway.
Background: Air pollution has been linked to respiratory diseases, while the effects of greenness remain inconclusive.
Objective: We investigated the associations between exposure to particulate matter (PM and PM), black carbon (BC), nitrogen dioxide (NO), ozone (O), and greenness (normalized difference vegetation index, NDVI) with respiratory emergency room visits and hospitalizations across seven Northern European centers in the European Community Respiratory Health Survey (ECRHS) study.
Methods: We used modified mixed-effects Poisson regression to analyze associations of exposure in 1990, 2000 and mean exposure 1990-2000 with respiratory outcomes recorded duing ECRHS phases II and III.
Chemosphere
January 2025
Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, 20742, USA. Electronic address:
Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) are recalcitrant organic pollutants often detected in stormwater. Various stormwater control measures (SCMs) can remove PAHs and PCBs by filtration, adsorption, and biodegradation. However, dissolved PAHs and PCBs remain present in the treated outflow of SCMs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani Campus, Surat Thani 84000, Thailand.
This research examines the possibility of palm oil and oil palm trunk biochar (OPTB) from pyrolysis effectively serving as alternative processing oils and fillers, substituting petroleum-based counterparts in natural rubber (NR) composites. Chemical, elemental, surface and morphological analyses were used to characterize both carbon black (CB) and OPTB, by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) gas porosimetry, and scanning electron microscopy (SEM). The influences of OPTB contents from 0 to 100 parts per hundred rubber (phr) on thermal, dielectric, dynamic mechanical, and cure characteristics, and the key mechanical properties of particulate NR-composites were investigated.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Mechatronics Engineering, Qingdao University of Science and Technology, Qingdao 266061, China.
This study employed a high-speed rotating crushing process to modify pyrolyzed carbon black (CBp) using self-lubricating and low-friction polytetrafluoroethylene (PTFE). The effects of PTFE content on the dispersion, mechanical properties, wear resistance, and thermal stability of modified PTFE-CBp/natural rubber (NR) composites were investigated. The rotating crushing process from the high-speed grinder altered the physical structure of PTFE, forming tiny fibrous structures that interspersed among the CBp particles.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Advanced Manufacturing Institute, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!