Background Information: Although actin is a relevant component of the plant nucleus, only three nuclear ABPs (actin-binding proteins) have been identified in plants to date: cofilin, profilin and nuclear myosin I. Although plants lack orthologues of the main structural nuclear ABPs in animals, such as lamins, lamin-associated proteins and nesprins, their genome does contain sequences with spectrin repeats and N-terminal calponin homology domains for actin binding that might be distant relatives of spectrin. We investigated here whether spectrin-like proteins could act as structural nuclear ABPs in plants.
Results: We have investigated the presence of spectrins in Allium cepa meristematic nuclei by Western blotting, confocal and electron microscopy, using antibodies against α- and β-spectrin chains that cross-react in plant nuclei. Their role as nuclear ABPs was analysed by co-immunoprecipitation and IF (immunofluorescence) co-localization and their association with the nuclear matrix was investigated by sequential extraction of nuclei with non-ionic detergent, and in low- and high-salt buffers after nuclease digestion. Our results demonstrate the existence of several spectrin-like proteins in the nucleus of onion cells that have different intranuclear distributions in asynchronous meristematic populations and associate with the nuclear matrix. These nuclear proteins co-immunoprecipitate and co-localize with actin.
Conclusions: These results reveal that the plant nucleus contains spectrin-like proteins that are structural nuclear components and function as ABPs. Their intranuclear distribution suggests that plant nuclear spectrin-like proteins could be involved in multiple nuclear functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BC20100083 | DOI Listing |
Int J Mol Sci
September 2020
Dubowitz Neuromuscular Centre, Developmental Neuroscience Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
Background: We are developing a novel therapy for Duchenne muscular dystrophy (DMD), involving the transplantation of autologous, skeletal muscle-derived stem cells that have been genetically corrected to express dystrophin. Dystrophin is normally expressed in activated satellite cells and in differentiated muscle fibres. However, in past preclinical validation studies, dystrophin transgenes have generally been driven by constitutive promoters that would be active at every stage of the myogenic differentiation process, including in proliferating muscle stem cells.
View Article and Find Full Text PDFCell
December 2014
Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia. Electronic address:
The spectrin superfamily of proteins plays key roles in assembling the actin cytoskeleton in various cell types, crosslinks actin filaments, and acts as scaffolds for the assembly of large protein complexes involved in structural integrity and mechanosensation, as well as cell signaling. α-actinins in particular are the major actin crosslinkers in muscle Z-disks, focal adhesions, and actin stress fibers. We report a complete high-resolution structure of the 200 kDa α-actinin-2 dimer from striated muscle and explore its functional implications on the biochemical and cellular level.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2013
Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
Homologous spectrin-like repeats can mediate specific protein interaction. The underlying mechanism is poorly understood. Dystrophin contains 24 spectrin-like repeats.
View Article and Find Full Text PDFCell Biol Int
April 2013
Cell and Molecular Biology Department, Centro Investigaciones Biolgicas, Madrid, Spain.
Plant cells have a well organized nucleus and nuclear matrix, but lack orthologues of the main structural components of the metazoan nuclear matrix. Although data is limited, most plant nuclear structural proteins are coiled-coil proteins, such as the NIFs (nuclear intermediate filaments) in Pisum sativum that cross-react with anti-intermediate filament and anti-lamin antibodies, form filaments 6-12 nm in diameter in vitro, and may play the role of lamins. We have investigated the conservation and features of NIFs in a monocot species, Allium cepa, and compared them with onion lamin-like proteins.
View Article and Find Full Text PDFNSP 5a3a along with three other distinct though similar splice variants were initially identified corresponding to locus HCMOGT-1 on chromosome 17p11.2 [1]. Secondary structure analysis of the novel structural protein (NSP) isoforms revealed similarity to Spectrin like proteins containing coiled coil domains [1].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!