Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Powder layering technique was evaluated using laboratory scale centrifugal granulator instrument to prepare extended release pellet dosage form of ketoprofen. Ethyl cellulose and shellac polymers were used for drug layering and extended release coating in the same apparatus. Inert sugar spheres were intermittently treated with drug powder and binding solution. Combination of ethyl cellulose (45cps) and shellac was evaluated as binders at different levels (1:3 ratio, at 6%, 12%, 16% and 21%w/w polymer) for drug loading and for extended release coating (1:3 ratio at 2%, 4% and 7% w/w polymer). Pellets were evaluated for drug release study using paddle apparatus in pH 6.8 Phosphate buffer, 900ml at 100 rpm. Ethyl cellulose and shellac when used as binder during drug layering did not extend the ketoprofen release beyond 4h. However, coating of drug loaded pellets using ethyl cellulose and shellac resulted in extended release profile of ketoprofen for about 10h. Ethyl cellulose coating alone at a level of 3% w/w resulted in extended release profile. Coated pellets were evaluated for sphericity, Hardness-Friability Index and scanning electron microscopy. Scanning electron micrographs of the pellets showed a uniform coating of polymer on the core pellets substantiating the use of centrifugal granulator for extended release coating. Release pattern from the optimized batch was best explained by Higuchi's model. The drug release pattern from the pellets was found to be Non-Fickian anomalous type, involving both diffusion and erosion mechanism. Accelerated stability study of the coated pellets filled in hard gelatin capsule was conducted for 3-month period and observed for the effect on drug release profile.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/138620711794474042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!