Vaxfectin: a versatile adjuvant for plasmid DNA- and protein-based vaccines.

Expert Opin Drug Deliv

Vical, Inc., Pharmaceutical Sciences, 10390 Pacific Center Court, San Diego, CA 92121, USA.

Published: December 2010

Importance Of The Field: Many vaccines require the use of an adjuvant to achieve immunity. So far, few adjuvants have advanced successfully through clinical trials to become part of licensed vaccines. Vaxfectin® (Vical, CA, USA) represents a next-generation adjuvant with promise as a platform technology, showing utility with both plasmid DNA (pDNA) and protein-based vaccines.

Areas Covered In This Review: This review describes the chemical, physical, preclinical and clinical development of Vaxfectin for pDNA-based vaccines. Also included is the preclinical development of Vaxfectin-adjuvanted protein- and peptide-based vaccines.

What The Reader Will Gain: The reader will gain knowledge of vaccine adjuvant development from bench to bedside.

Take Home Message: Vaxfectin has effectively boosted the immune response against a range of pDNA-expressed pathogenic antigens in preclinical models extending from rodents to non-human primates. In the clinic, Vaxfectin-adjuvanted pDNA-based H5N1 influenza vaccines have been shown to be well tolerated and to result in durable immune responses within the predicted protective range reported for protein-based vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1517/17425247.2010.538047DOI Listing

Publication Analysis

Top Keywords

protein-based vaccines
8
reader will
8
will gain
8
vaccines
6
vaxfectin versatile
4
adjuvant
4
versatile adjuvant
4
adjuvant plasmid
4
plasmid dna-
4
dna- protein-based
4

Similar Publications

The Chikungunya virus (CHIKV) is a mosquito-borne virus with a long history of recurring epidemics transmitted through mosquitoes. The rapid spread of CHIKV has intensified the need for potent vaccines. Escherichia coli (), a vital part of human gut microbiota, is utilized in recombinant DNA technology for cloning.

View Article and Find Full Text PDF

Background: We previously reported the safety and immunogenicity data from a randomized trial comparing the booster responses of vaccinees who received monovalent (MV) recombinant protein Beta-variant (MVB.1.351) and MV ancestral protein (MVD614) vaccines with AS03 adjuvant (Sanofi/GSK) to booster response of vaccinees who received mRNA MV ancestral strain BNT162b2 vaccine (Pfizer-BioNTech).

View Article and Find Full Text PDF

The HIPRA-HH-2 was a multicentre, randomized, active-controlled, double-blind, non-inferiority phase IIb clinical trial comparing the immunogenicity and safety of the PHH-1V adjuvanted recombinant vaccine as a heterologous booster against homologous booster with BNT162b2. Interim results demonstrated strong humoral and cellular immune response against the SARS-CoV-2 Wuhan-Hu-1 strain and the Beta, Delta, and Omicron BA.1 variants up to day 98 post-dosing.

View Article and Find Full Text PDF

Structural and Functional Glycosylation of the Abdala COVID-19 Vaccine.

Glycobiology

January 2025

Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Road, OX1 3QU, United Kingdom.

Abdala is a COVID-19 vaccine produced in Pichia pastoris and is based on the receptor-binding domain (RBD) of the SARS-CoV-2 spike. Abdala is currently approved for use in multiple countries with clinical trials confirming its safety and efficacy in preventing severe illness and death. Although P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!