Regulation of mammalian muscle type 6-phosphofructo-1-kinase and its implication for the control of the metabolism.

IUBMB Life

Laboratorio de Enzimologia e Controle do Metabolismo (LabECoM) and Laboratório de Oncobiologia Molecular (LabOMol), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Published: November 2010

Phosphofructokinase (PFK) is a major regulatory glycolytic enzyme and is considered to be the pacemaker of glycolysis. This enzyme presents a puzzling regulatory mechanism that is modulated by a large variety of metabolites, drugs, and intracellular proteins. To date, the mammalian enzyme structure has not yet been resolved. However, it is known that PFK undergoes an intricate oligomerization process, shifting among monomers, dimers, tetramers, and more complex oligomeric structures. The equilibrium between PFK dimers and tetramers is directly correlated with the enzyme regulation, because the dimer exhibits very low catalytic activity, whereas the tetramer is fully active. Several PFK ligands modulate the enzyme, favoring the formation of its dimers or tetramers. The present review integrates recent findings regarding the regulatory aspects of muscle type PFK and discusses their relation to the control of metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.393DOI Listing

Publication Analysis

Top Keywords

dimers tetramers
12
muscle type
8
control metabolism
8
pfk
5
enzyme
5
regulation mammalian
4
mammalian muscle
4
type 6-phosphofructo-1-kinase
4
6-phosphofructo-1-kinase implication
4
implication control
4

Similar Publications

High-precision molecular manipulation techniques are used to control the distance between radical molecules on superconductors. Our results show that the molecules can host single electrons with a spin 1/2. By changing the distance between tip and sample, a quantum phase transition from the singlet to doublet ground state can be induced.

View Article and Find Full Text PDF

Unlabelled: The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN).

View Article and Find Full Text PDF

Hydrodynamic characterization of the FtsZ protein from Escherichia coli demonstrates the presence of linear and lateral trimers.

Anal Biochem

January 2025

Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago, 7800003, Chile; Laboratorio de Biotecnología Vegetal y Ambiental Aplicada, Universidad Tecnológica Metropolitana, Santiago, Chile.

FtsZ is a bacterial protein that plays a crucial role in cytokinesis by forming the Z-ring. This ring acts as a scaffold to recruit other division proteins and guide the synthesis of septal peptidoglycan, which leads to cell constriction. In its native state, the FtsZ protein from Escherichia coli (EcFtsZ) is a multi-oligomer comprising dimers, trimers, tetramers, and hexamers in a dynamic self-association equilibrium depending on its concentration.

View Article and Find Full Text PDF

Stilbenes are specialized metabolites that are particularly abundant in species. Although the biosynthetic pathways of stilbenes have been well-characterized, the role of specific peroxidases in stilbene oligomerization remains to be investigated. In this study, we used grapevine cell cultures to characterize the functional role of peroxidase 4 (VvPRX4) in the production of resveratrol oligomers after elicitation with methyl jasmonate (MeJA).

View Article and Find Full Text PDF

Dissociation of Macromolecules in Laser-Heated Droplets Monitored by CD-MS.

Anal Chem

January 2025

Department of Chemistry, Indiana University, 800 Kirkwood Avenue, Bloomington, Indiana 47401, United States.

Charge detection mass spectrometry (CD-MS) is used to monitor the dissociation of large (300 kDa to 20 MDa) protein complexes in droplets heated with a 10.6 μm CO laser. In this approach, electrospray ionization (ESI) is used to produce charged droplets containing macromolecular complexes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!