Expression of small leucine-rich proteoglycans in the developing retina and kainic acid-induced retinopathy in ICR mice.

J Vet Med Sci

Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.

Published: April 2011

The aim of this study was to determine the developmental changes of small leucine-rich proteoglycans (PGs), decorin, biglycan and fibromodulin, in ICR mouse retinas and to elucidate their role in the adult retina using kainic acid (KA)-induced retinal degeneration model. Retinas of prenatal, postnatal and adult mice were collected for histological and immunohistochemical staining to investigate the changes in distribution of these PGs. Decorin-and fibromodulin-immunostainings were diffusely distributed at prenatal and early postnatal stages and were stronger in the adult retina. However, biglycan was moderately distributed in the prenatal and early postnatal stages and was faint in the adult retina. Retinas were collected at 1, 3 and 7 days after intravitreal injection of KA. Retinas of KA injected eyes underwent shrinkage accompanied by serious damage in the inner layers. Decorin and fibromodulin were upregulated in the inner retinal layers of KA-injected eyes compared to the normal ones. Our results suggest that decorin and fibromodulin play key roles in retinal differentiation, and contribute to the retinal damage and repair process. However, biglycan may have no or only a limited role in the mouse retinal development or repair process.

Download full-text PDF

Source
http://dx.doi.org/10.1292/jvms.10-0464DOI Listing

Publication Analysis

Top Keywords

adult retina
12
small leucine-rich
8
leucine-rich proteoglycans
8
retina kainic
8
distributed prenatal
8
prenatal early
8
early postnatal
8
postnatal stages
8
decorin fibromodulin
8
repair process
8

Similar Publications

Obesity and retinal microvasculature dysfunction are linked and impact visual acuity. The aim of this study was to determine the relationship between the HOMA-IR score and the presence of vascular dysfunction (capillary perfusion and flux index) of the optic nerve head (ONH) of the retina in obese patients and to determine its diagnostic performance to predict vascular dysfunction. A case-control study was conducted in 2022 involving individuals from obese and non-obese groups.

View Article and Find Full Text PDF

Management of Pediatric Rhegmatogenous Retinal Detachment.

Semin Ophthalmol

January 2025

Wills Eye Hospital Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA, USA.

Introduction And Primary Objective: Pediatric rhegmatogenous retinal detachment (RRD) presents unique challenges in diagnosis and management. A thorough evaluation of family, medical, and ocular history is helpful, as systemic and genetic conditions can predispose children to RRD. Trauma, high myopia, and history of prematurity are also common risk factors.

View Article and Find Full Text PDF

Photoreceptor metabolic window unveils eye-body interactions.

Nat Commun

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Study Center for Ocular Diseases, Guangzhou, China.

Photoreceptors are specialized neurons at the core of the retina's functionality, with optical accessibility and exceptional sensitivity to systemic metabolic stresses. Here we show the ability of risk-free, in vivo photoreceptor assessment as a window into systemic health and identify shared metabolic underpinnings of photoreceptor degeneration and multisystem health outcomes. A thinner photoreceptor layer thickness is significantly associated with an increased risk of future mortality and 13 multisystem diseases, while systematic analyses of circulating metabolomics enable the identification of 109 photoreceptor-related metabolites, which in turn elevate or reduce the risk of these health outcomes.

View Article and Find Full Text PDF

Identification of lens-regulated genes driving anterior eye development and eye size.

Dev Biol

January 2025

University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK. Electronic address:

Signals from the lens regulate multiple aspects of eye development, including establishment of eye size, patterning of the presumptive iris and ciliary body in the anterior optic cup and migration and differentiation of neural crest cells. To advance understanding of the molecular mechanism by which the lens regulates eye development, we performed transcriptome profiling of embryonic chicken retinas after lens removal. Genes associated with nervous system development were upregulated in lens-removed eyes, but the presumptive ciliary body and iris region did not adopt a neural retina identity following lens removal.

View Article and Find Full Text PDF

Anatomy-driven segmentation of parafoveal optical coherence tomography (OCT) measures may improve associations with clinical outcomes in multiple sclerosis.

J Neurol

January 2025

Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.

Background: Previous investigations on optical coherence tomography (OCT) in multiple sclerosis (MS) focused on generalizable macular and peri-papillary regions without considering the anatomic variations of the retinal layer thickness.

Objective: This study aimed to assess the utility of parafoveal retinal layer thickness measured by OCT, underscoring its relationships with clinical outcomes in MS.

Methods: In this cross-sectional study, 214 people with MS (pwMS) and 57 age- and sex-matched healthy controls (HCs) were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!