In ion-coupled transport proteins, occupation of selective ion-binding sites is required to trigger conformational changes that lead to substrate translocation. Neurotransmitter transporters, targets of abused and therapeutic drugs, require Na(+) and Cl(-) for function. We recently proposed a chloride-binding site in these proteins not present in Cl(-)-independent prokaryotic homologues. Here we describe conversion of the Cl(-)-independent prokaryotic tryptophan transporter TnaT to a fully functional Cl(-)-dependent form by a single point mutation, D268S. Mutations in TnaT-D268S, in wild type TnaT and in serotonin transporter provide direct evidence for the involvement of each of the proposed residues in Cl(-) coordination. In both SERT and TnaT-D268S, Cl(-) and Na(+) mutually increased each other's potency, consistent with electrostatic interaction through adjacent binding sites. These studies establish the site where Cl(-) binds to trigger conformational change during neurotransmitter transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3024779PMC
http://dx.doi.org/10.1074/jbc.M110.186064DOI Listing

Publication Analysis

Top Keywords

chloride-binding site
8
trigger conformational
8
cl--independent prokaryotic
8
reconstructing chloride-binding
4
site bacterial
4
bacterial neurotransmitter
4
neurotransmitter transporter
4
transporter homologue
4
homologue ion-coupled
4
ion-coupled transport
4

Similar Publications

Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2).

View Article and Find Full Text PDF

Convergent Active Site Evolution in Platinum Single Atom Catalysts for Acetylene Hydrochlorination and Implications for Toxicity Minimization.

ACS Catal

September 2024

Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland.

Platinum single atoms anchored onto activated carbon enable highly stable Hg-free synthesis of vinyl chloride (VCM) via acetylene hydrochlorination. Compared to gold-based alternatives, platinum catalysts are in initial phases of development. Most synthetic approaches rely on chloroplatinic acid, presenting opportunities to explore other precursors and their impact on catalyst structure, reactivity, and toxicity aspects.

View Article and Find Full Text PDF

Structural identification of a selectivity filter in CFTR.

Proc Natl Acad Sci U S A

February 2024

Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065.

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel that regulates transepithelial salt and fluid homeostasis. CFTR dysfunction leads to reduced chloride secretion into the mucosal lining of epithelial tissues, thereby causing the inherited disease cystic fibrosis. Although several structures of CFTR are available, our understanding of the ion-conduction pathway is incomplete.

View Article and Find Full Text PDF

Antibiotic-resistant that produce oxacillinase (OXA)-48-like Class D β-lactamases are often linked to increased clinical mortality. Though the catalytic mechanism of OXA-48 is known, the molecular origin of its biphasic kinetics has been elusive. We here identify selective chloride binding rather than decarbamylation of the carbamylated lysine as the source of biphasic kinetics, utilizing isothermal titration calorimetry (ITC) to monitor the complete reaction course with the OXA-48 variant having a chemically stable -acetyl lysine.

View Article and Find Full Text PDF

Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1and CWN2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!