Understanding the operational parameters affecting NDMA formation at Advanced Water Treatment Plants.

J Hazard Mater

The University of Queensland, Advanced Water Management Centre, Level 4 Gehrmann Bldg, Research Road, Brisbane, QLD 4072, Australia.

Published: January 2011

N-nitrosodimethylamine (NDMA) can be formed when secondary effluents are disinfected by chloramines. By means of bench scale experiments this paper investigates operational parameters than can help Advanced Water Treatment Plants (AWTPs) to reduce the formation of NDMA during the production of high quality recycled water. The formation of NDMA was monitored during a contact time of 24h using dimethylamine as NDMA model precursor and secondary effluent from wastewater treatment plants. The three chloramine disinfection strategies tested were pre-formed and in-line formed monochloramine, and pre-formed dichloramine. Although the latter is not employed on purpose in full-scale applications, it has been suggested as the main contributing chemical generating NDMA during chloramination. After 24h, the NDMA formation decreased in both matrices tested in the order: pre-formed dichloramine>in-line formed monochloramine≫pre-formed monochloramine. The most important parameter to consider for the inhibition of NDMA formation was the length of contact time between disinfectant and wastewater. Formation of NDMA was initially inhibited for up to 6h with concentrations consistently <10 ng/L during these early stages of disinfection, regardless of the disinfection strategy. The reduction of the contact time was implemented in Bundamba AWTP (Queensland, Australia), where NDMA concentrations were reduced by a factor of 20 by optimizing the disinfection strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2010.10.090DOI Listing

Publication Analysis

Top Keywords

ndma formation
12
treatment plants
12
formation ndma
12
ndma
9
operational parameters
8
advanced water
8
water treatment
8
contact time
8
formation
6
understanding operational
4

Similar Publications

Making Waves: Formulation components used in agriculture may serve as important precursors for nitrogenous disinfection byproducts.

Water Res

January 2025

Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States. Electronic address:

N-Nitrosamines, many of which are carcinogenic, mutagenic, and teratogenic, are disinfection byproducts (DBPs) formed from the reaction of chloramine with nitrogenous organic compounds during water disinfection. The identification of major nitrosamine precursors is important to understand and prevent nitrosamine formation. In this analysis, we propose that efforts to identify nitrosamine precursors must look beyond conventionally evaluated active agent chemicals to consider inert or inactive chemicals as potentially relevant precursors.

View Article and Find Full Text PDF

Overlooked risks of photoaging of nitrogenous microplastics with natural organic matter in water: Augmenting the formation of nitrogenous disinfection by-products.

Water Res

December 2024

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China. Electronic address:

In aqueous environments, microplastics (MPs) undergo photoaging, releasing dissolved organic matter (DOM). Disinfection byproducts (DBPs) formation from natural organic matter (NOM) phototransformation has been reported. However, the impact of NOM on the photoaging of MPs (especially nitrogen-containing MPs) and subsequent nitrogenous DBPs (N-DBPs) formation remains unknown.

View Article and Find Full Text PDF

Transgenerational Reproductive and Developmental Toxicity Induced by N-Nitrosodimethylamine and Its Metabolite Formaldehyde in Drosophila melanogaster.

J Appl Toxicol

January 2025

Laboratorio de Genética y Toxicología Ambiental-Banco de Moscas, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.

N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde.

View Article and Find Full Text PDF

Several potent carcinogenic nitrosamines, including N-nitrosodiethylamine (NDEA) and N-nitrosodimethylamine (NDMA), induce micronuclei in the micronucleated hepatocyte (MNHEP) assay but not in the micronucleated reticulocyte (MNRET) assay. However, the MNHEP assay is not as frequently used as the MNRET assay for evaluating in vivo genotoxicity. The present study evaluated MN formation in the liver of Big Blue transgenic rats exposed to four small-molecule nitrosamines, NDMA, N-nitrosodiisopropylamine (NDIPA), N-nitrosoethylisoporpylamine (NEIPA), and N-nitrosomethylphenylamine (NMPA), using a repeat-dose protocol typically used for in vivo mutagenicity studies.

View Article and Find Full Text PDF

This study investigated the potential genotoxic and carcinogenic effects of N-nitrosodimethylamine (NDMA), a hazardous compound found in ranitidine formulations that are used to treat excessive stomach acid. The study first examined the effects of NDMA-contaminated ranitidine formulation on Allium cepa root growth and mitotic activity. The results demonstrated dose-dependent decreases in both root growth and mitotic index indicating genotoxicity and cell division disruption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!