Propofol has been shown to exert neuroprotective effects. Delayed rectifier potassium current (I(K)) was reported to be closely related to neuronal damage. This study was designed to test the effects of propofol on I(K) in rat parietal cortical neurons and the involvement of PKC in this activity. Whole-cell patch-clamp recordings were performed in rat parietal cortical neurons. The amplitudes of I(K) were recorded before and after the addition of different concentrations of propofol. Propofol concentration-dependently inhibited I(K) with an IC50 value of 36.3±2.7 μM. Moreover, propofol caused a downward shift of the I-V curve of I(K) in a concentration dependent manner. The kinetics of I(K) was altered by propofol, with decreased activation and delayed recovery of I(K). Pretreatment with calphostin-C (a non-selective inhibitor of PKC) or PKC epsilon translocation inhibitor peptide (PKC epsilon inhibitor) abrogated the inhibition of I(K) by propofol. In conclusion, propofol inhibited I(K) via the activation of PKC epsilon in rat cerebral parietal cortical neurons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2010.10.072DOI Listing

Publication Analysis

Top Keywords

parietal cortical
16
cortical neurons
16
rat parietal
12
pkc epsilon
12
propofol
9
propofol inhibited
8
delayed rectifier
8
rectifier potassium
8
potassium current
8
epsilon rat
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!