Dextromethorphan exhibits neuroprotective effects against inflammation-mediated neurodegeneration. However, relatively little is known regarding the molecular mechanism for this inflammation-mediated neuroprotection. Human K(v)1.3 channels, one of the voltage-gated potassium channels, are widely expressed in the immune and nervous systems. Activation of human K(v)1.3 channels causes neuroglia-mediated neurodegeneration. Agents that inhibit human K(v)1.3 channel activity have been developed as novel drugs for immunosuppression. In the present study, we investigated the effects of dextromethorphan on human K(v)1.3 or K(v)1.2 channel activity heterologously expressed in Xenopus laevis oocytes. The channel currents were measured with the two-electrode voltage clamp technique. Activation of both channels induced outward peak and steady-state currents. Dextromethorphan treatment induced a slight inhibition of peak currents in human K(v)1.2 and K(v)1.3 channels, whereas dextromethorphan profoundly inhibited the steady-state currents of human K(v)1.3 channels compared to K(v)1.2 channel currents. Dextromethorphan's action on steady-state currents of human K(v)1.3 channels was in a concentration-dependent manner. The half-maximal inhibitory concentration (IC(50)) on steady-state currents of human K(v)1.3 channels was 12.8±1.6μM. Dextromethorphan also accelerated the C-type inactivation rate, increased the current decay rate, and inhibited currents in a use-dependent manner. These results indicate that dextromethorphan accelerates C-type inactivation of human K(v)1.3 channels and acts as an open-channel blocker. These results further suggest the possibility that dextromethorphan-mediated acceleration of C-type inactivation of human K(v)1.3 channels might be one of the cellular bases of dextromethorphan-mediated protection against inflammation-mediated neurodegeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2010.10.091DOI Listing

Publication Analysis

Top Keywords

human kv13
40
kv13 channels
32
c-type inactivation
16
steady-state currents
16
currents human
16
channel activity
12
kv13
11
human
10
channels
10
dextromethorphan human
8

Similar Publications

Background: Changes in K channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K channels. Their involvement in hydrogen sulfide (HS)-mediated vasorelaxation is still unclear, and data about human vessels are limited.

View Article and Find Full Text PDF

Novel insights into the modulation of the voltage-gated potassium channel K1.3 activation gating by membrane ceramides.

J Lipid Res

August 2024

Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary. Electronic address:

Membrane lipids extensively modulate the activation gating of voltage-gated potassium channels (K), however, much less is known about the mechanisms of ceramide and glucosylceramide actions including which structural element is the main intramolecular target and whether there is any contribution of indirect, membrane biophysics-related mechanisms to their actions. We used two-electrode voltage-clamp fluorometry capable of recording currents and fluorescence signals to simultaneously monitor movements of the pore domain (PD) and the voltage sensor domain (VSD) of the K1.3 ion channel after attaching an MTS-TAMRA fluorophore to a cysteine introduced into the extracellular S3-S4 loop of the VSD.

View Article and Find Full Text PDF

K1.3-induced hyperpolarization is required for efficient Kaposi's sarcoma-associated herpesvirus lytic replication.

Sci Signal

July 2024

School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, LS2 9JT Leeds, UK.

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus that is linked directly to the development of Kaposi's sarcoma. KSHV establishes a latent infection in B cells, which can be reactivated to initiate lytic replication, producing infectious virions. Using pharmacological and genetic silencing approaches, we showed that the voltage-gated K channel K1.

View Article and Find Full Text PDF

Regulation of T Lymphocyte Functions through Calcium Signaling Modulation by Nootkatone.

Int J Mol Sci

May 2024

Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Goyang 10326, Gyeonggi-do, Republic of Korea.

Recent advancements in understanding the intricate molecular mechanisms underlying immunological responses have underscored the critical involvement of ion channels in regulating calcium influx, particularly in inflammation. Nootkatone, a natural sesquiterpenoid found in and various citrus species, has gained attention for its diverse pharmacological properties, including anti-inflammatory effects. This study aimed to elucidate the potential of nootkatone in modulating ion channels associated with calcium signaling, particularly CRAC, K1.

View Article and Find Full Text PDF

Use of tetraethylammonium (TEA) and Tris loading for blocking TRPM7 channels in intact cells.

Front Pharmacol

April 2024

Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, United States.

Tetraethylammonium (TEA), a quaternary ammonium compound, is a well-known blocker of potassium channels belonging to various subfamilies, such as K1-3, K1, 2 and prokaryotic KcsA. In many cases, TEA acts from the extracellular side by open pore blockade. TEA can also block transient receptor potential (TRP) cation channels, such as TRPM7, in a voltage-dependent manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!