Scope and limitations of cyclopropanations with sulfur ylides.

J Am Chem Soc

Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 München, Germany.

Published: December 2010

The rates of the reactions of the stabilized and semistabilized sulfur ylides 1a-g with benzhydrylium ions (2a-e) and Michael acceptors (2f-v) have been determined by UV-vis spectroscopy in DMSO at 20 °C. The second-order rate constants (log k(2)) of these reactions correlate linearly with the electrophilicity parameters E of the electrophiles 2 as required by the correlation log k(2) = s(N + E), which allowed us to calculate the nucleophile-specific parameters N and s for the sulfur ylides 1a-g. The rate constants for the cyclopropanation reactions of sulfur ylides with Michael acceptors lie on the same correlation line as the rate constants for the reactions of sulfur ylides with carbocations. This observation is in line with a stepwise mechanism for the cyclopropanation reactions in which the first step, nucleophilic attack of the sulfur ylides at the Michael acceptors, is rate determining. As the few known pK(aH) values for sulfur ylides correlate poorly with their nucleophilic reactivities, the data reported in this work provide the first quantitative approach to sulfur ylide reactivity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja1084749DOI Listing

Publication Analysis

Top Keywords

sulfur ylides
28
michael acceptors
12
rate constants
12
sulfur
8
ylides 1a-g
8
cyclopropanation reactions
8
reactions sulfur
8
ylides michael
8
ylides
7
reactions
5

Similar Publications

Reactions of cyclic thioureas (1,3,4,5-tetramethylimidazol-2-thione and 1,3-dimethylimidazolidin-2-thione) and ureas (1,3,4,5-tetramethylimidazol-2-one and 1,3-dimethylimidazolidin-2-one) with an isolable dialkylsilylene were examined. In these reactions, cyclic thioureas served as sulfur and NHC (N-heterocyclic carbene) sources, and the corresponding silanethione and NHC-derived products formed via silanethione-NHC complexes. Reactions of cyclic ureas with the silylene afforded a new NHC and an isolable azomethine ylide.

View Article and Find Full Text PDF

A novel study on the hypervalent iodine-mediated polyfluoroalkylation of sulfoxonium ylides was developed. Sulfoxonium ylides, known for their versatility and stability, are promising substrates for numerous transformations in synthetic chemistry. This report demonstrates the successful derivatization of sulfoxonium ylides with trifluoroethyl or tetrafluoropropyl groups, and provides valuable insights into the scope and limitations of this approach.

View Article and Find Full Text PDF

Cascade Reaction of Enyne-Amides with Sulfur-Ylides for the Synthesis of Indole-Tethered 5-Oxaspiro[2.4]hept-6-ene Derivatives.

Org Lett

December 2024

Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.

An unexpected cascade reaction of enyne-amides with sulfur-ylides has been developed. This cascade reaction involves cycloisomerization, dearomatic cyclopropanation, ring-opening rearomatization, and subsequent cyclopropanation, differing from the common [2 + n] cyclization of enyne-amides. A variety of (spirocyclopropane)dihydrofuran derivatives have been efficiently and conveniently synthesized in a single vessel, exhibiting excellent diastereoselectivity and good functional group tolerance.

View Article and Find Full Text PDF

A novel annulation reaction of amidines with sulfur ylides and nitrobenzenes has been developed, affording various novel 4-hydroxy-5-phenylaminoimidazoles in moderate to excellent yields. The 4-hydroxy-5-phenylaminoimidazoles have been further converted into α-ketoamide and imidazol-4-imine derivatives. Moreover, a plausible mechanism for this multicomponent reaction is proposed.

View Article and Find Full Text PDF
Article Synopsis
  • The article presents the first successful creation of SF-ynamides, which are multifunctional compounds incorporating a pentafluorosulfanyl group.
  • * The synthesis involves a two-step process: first, a radical reaction adds the SF group to different terminal ynamides, followed by removing a chlorine atom.
  • * Various chemical reactions can readily modify these newly formed SF-ynamides, demonstrating their potential for diverse applications in organic chemistry.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!