Synthesis and characterization of 5-octylthieno[3,4-c]pyrrole-4,6-dione derivatives as new monomers for conjugated copolymers.

Org Lett

Canada Research Chair on Electroactive and Photoactive Polymers, Département de Chimie, Université Laval, Québec City, Québec, G1K 7P4, Canada.

Published: January 2011

An efficient route for the synthesis of 1-iodo-5-octyl-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione as a key intermediate to build new electron-deficient monomers and related conjugated polymers is reported. Along these lines, two new low bandgap copolymers were synthesized from Stille or Suzuki coupling. These polymers were characterized and their properties compared to those of analogous conjugated polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ol1027514DOI Listing

Publication Analysis

Top Keywords

monomers conjugated
8
conjugated polymers
8
synthesis characterization
4
characterization 5-octylthieno[34-c]pyrrole-46-dione
4
5-octylthieno[34-c]pyrrole-46-dione derivatives
4
derivatives monomers
4
conjugated copolymers
4
copolymers efficient
4
efficient route
4
route synthesis
4

Similar Publications

Self-assembled aptamer nanoparticles for enhanced recognition and anticancer therapy through a lysosome-independent pathway.

Acta Biomater

January 2025

Shanghai Institute of virology, Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China. Electronic address:

Aptamers and aptamer-drug conjugates (ApDCs) have shown some success as targeted therapies in cancer theranostics. However, their stability in complex media and their capacity to evade lysosomal breakdown still need improvement. To address these challenges, we herein developed a one-step self-assembly strategy to improve the stability of aptamers or ApDCs, while simultaneously enhancing their delivery performance and therapeutic efficiency through a lysosome-independent pathway.

View Article and Find Full Text PDF

Optically responsive materials are applied in sensing, actuators, and optical devices. One such class of material is dye-doped liquid crystal polymers that self-assemble into cholesteric mesophases that reflect visible light. We report here the synthesis and characterization of a family of linear and mildly crosslinked terpolymers prepared by the ROMP of norbornene-based monomers.

View Article and Find Full Text PDF

Exploration of new π-conjugated building blocks for construction of supramolecular polymers is at the forefront of self-assembly. Herein, we incorporate a highly planar anthanthrene skeleton into the design of two supramolecular monomers 1 and 2. Their supramolecular polymerization have been comprehensively investigated by spectroscopic studies.

View Article and Find Full Text PDF

Polydiacetylene (PDA) Embedded Polymer-Based Network Structure for Biosensor Applications.

Gels

January 2025

Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.

Biosensors, which combine physical transducers with biorecognition elements, have seen significant advancement due to the heightened interest in rapid diagnostic technologies across a number of fields, including medical diagnostics, environmental monitoring, and food safety. In particular, polydiacetylene (PDA) is gaining attention as an ideal material for label-free colorimetric biosensor development due to its unique color-changing properties in response to external stimuli. PDA forms through the self-assembly of diacetylene monomers, with color change occurring as its conjugated backbone twists in response to stimuli such as temperature, pH, and chemical interactions.

View Article and Find Full Text PDF

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!