Using picosecond absorption spectroscopy it has been shown that in Rhodobacter sphaeroides reaction centres the substitution of the primary quinone acceptor (QA), ubiquinone-10, by other quinone species (with redox potentials higher or lower than that of ubiquinone-10) has essentially no modifying effect on the reaction centre protein. The molecular relaxation processes that accompany the localization and stabilization of a photo-excited electron on the intermediate acceptor, bacteriopheophytin (I), are not affected, although the subsequent transfer of the electron from I to QA is slowed down. Consequently, this leads to a lower quantum efficiency of high rate of direct I-----QA reaction is normally due to the specificity of the primary quinone species and its binding site in the reaction centre protein which provide optimum steric and chemical conditions for an effective interaction between I and QA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/1011-1344(90)85004-g | DOI Listing |
J Org Chem
December 2024
Aix-Marseille Université, CNRS UMR 7325 Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, Marseille cedex 09 13288, France.
The one-pot transamination reactions on a zwitterionic benzoquinonemonoimine yield either a quinoxaline derivative or bis-zwitterionic macrocycles, depending on the number of carbon atoms bridging primary polyamines. These latter products, featuring two confined donor cavities, are the result of a [2 + 2] condensation without the need for template effect or high dilution conditions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an oxidative derivative of tire anti-degradant, has been linked to mortality in coho salmon (Oncorhynchus kisutch) and has exhibited potential human toxicity. Hence, exploring how 6PPD-Q interacts with biomacromolecules like enzymes is indispensable to assess its human toxicity and elucidate its mechanism of action. This investigation aims to explore the impact of 6PPD-Q on lactate dehydrogenase (LDH) through various methods.
View Article and Find Full Text PDFMethods Protoc
December 2024
Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, H-7624 Pécs, Hungary.
An electrochemical investigation of 1,2- and 1,4-dihydroxybenzenes was carried out with platinum macro- and microelectrodes using square wave and cyclic voltammetry techniques. Furthermore, the effect of the two solvents-acetic acid and ethyl acetate-was compared. When using square wave voltammetry, signals only appeared at lower frequencies and only when the supporting electrolyte was in excess, as expected due to the relatively low permittivity of the used solvents.
View Article and Find Full Text PDFEur J Med Res
December 2024
Department of Immunology and Microbiology, College of Life Science and Technology, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, No. 601 Huangpu Avenue West, Tianhe, Guangzhou, 510632, China.
Background: The T790M mutation in the epidermal growth factor receptor (EGFR) gene is the primary cause of resistance to EGFR-tyrosine kinase inhibitor (TKI) therapy in non-small cell lung cancer (NSCLC) patients. Previous research demonstrated that certain traditional Chinese medicine (TCM) monomers exhibit anti-tumor effects against various malignancies. This study aims to investigate the potentials of shikonin screened from a TCM monomer library containing 1060 monomers in killing EGFR-T790M drug-resistant NSCLC cells and elucidate the underlying mechanisms.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
Amine oxidation is an important organic reaction for the production of high-value N-containing compounds. However, it is still challenging to control the reactivity of active N-centered radicals to selectively access N-oxidation products. Herein, this study reports the engineering of cytochrome P450BM3 into multifunctional N-oxidizing enzymes with the assistance of dual-functional small molecules (DFSM) to selectively produce N-oxygenation (i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!