Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0029-1245874DOI Listing

Publication Analysis

Top Keywords

[multiple regeneration
4
regeneration nodes
4
nodes temporal
4
temporal follow-up
4
follow-up budd-chiari
4
budd-chiari syndrome
4
syndrome tips]
4
[multiple
1
nodes
1
temporal
1

Similar Publications

Distal tibial fractures are common lower-limb injuries and are generally associated with a high risk of postoperative complications, especially in patients with multiple medical comorbidities. This study sought to ascertain the efficacy of retrograde intramedullary tibial nails (RTN) for treating extra-articular distal tibial fractures in high-risk patients. Between January 2019 and December 2021, 13 patients considered at high risk for postoperative complications underwent RTN fixation.

View Article and Find Full Text PDF

Retinal ganglion cells (RGCs) generally fail to regenerate axons, resulting in irreversible vision loss after optic nerve injury. While many studies have shown that modulating specific genes can enhance RGCs survival and promote optic nerve regeneration, inducing long-distance axon regeneration through single-gene manipulation remains challenging. Nevertheless, combined multi-gene therapies have proven effective in significantly enhancing axonal regeneration.

View Article and Find Full Text PDF

Nanozymes with specific catalytic activity inhibit inflammation and promote wound healing efficiently and safely. In this work, multifunctional manganese-based nanozymes (MnGA) with antioxidant properties were successfully constructed via a simple coordination reaction in which manganese chloride was used as the manganese source and gallic acid (GA) was used as the ligand solution. MnGA possesses both catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities and a reactive nitrogen species (RNS) scavenging capacity, which enables it to efficiently inhibit the inflammatory response.

View Article and Find Full Text PDF

A mono-phasic protocol for micropropagation of potato cv. Cooch Behar local, its acclimatization, on-field evaluation, and fidelity analysis.

3 Biotech

February 2025

Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India.

A protocol for micropropagation of potato ( L.) cv. Cooch Behar local retaining the fidelity of the in vitro regenerants was established for the first time.

View Article and Find Full Text PDF

Bolstered bone regeneration by multiscale customized magnesium scaffolds with hierarchical structures and tempered degradation.

Bioact Mater

April 2025

Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China.

Addressing irregular bone defects is a formidable clinical challenge, as traditional scaffolds frequently fail to meet the complex requirements of bone regeneration, resulting in suboptimal healing. This study introduces a novel 3D-printed magnesium scaffold with hierarchical structure (macro-, meso-, and nano-scales) and tempered degradation (microscale), intricately customized at multiple scales to bolster bone regeneration according to patient-specific needs. For the hierarchical structure, at the macroscale, it can feature anatomic geometries for seamless integration with the bone defect; The mesoscale pores are devised with optimized curvature and size, providing an adequate mechanical response as well as promoting cellular proliferation and vascularization, essential for natural bone mimicry; The nanoscale textured surface is enriched with a layered double hydroxide membrane, augmenting bioactivity and osteointegration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!