BACKGROUND: Bernard-Soulier syndrome (BSS) is a severe congenital bleeding disorder characterized by thrombocytopenia, thrombocytopathy and decreased platelet adhesion. BSS results from genetic alterations of the glycoprotein (GP) Ib/IX/V complex. METHODS: We report on a patient demonstrating typical BSS phenotype (thrombocytopenia with giant platelets, bleeding symptoms). However, BSS was not diagnosed until he reached the age of 39 years. RESULTS: Flow cytometry of the patient's platelets revealed absence of GPIb/IX/V receptor surface expression. In addition, immunofluorescence analysis of patient's platelets demonstrated very faint staining of GPIX. A novel homozygous deletion comprising 11 nucleotides starting at position 1644 of the GPIX gene was identified using molecular genetic analysis. CONCLUSIONS: The novel 11-nucleotide deletion (g.1644_1654del11) was identified as causing the bleeding disorder in the BSS patient. This homozygous deletion includes the last 4 nucleotides of the Kozak sequence as well as the start codon and the following 4 nucleotides of the coding sequence. The Kozak sequence is a region indispensable for the initiation of the protein translation process, thus preventing synthesis of functional GPIX protein in the case of deletion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2980512 | PMC |
http://dx.doi.org/10.1159/000320255 | DOI Listing |
J Pediatr Hematol Oncol
January 2025
Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, NC.
Constitutional platelet disorders have become better understood since Bernard and Soulier first described a case in 1948. Their diagnosis can also be challenging due to overlap in clinical presentation and lab findings with platelet type von Willebrand. Bernard-Soulier syndrome is a disorder caused by GPIb receptor mutations that decrease its affinity for von Willebrand factor resulting in reduced platelet function and macrothrombocytopenia.
View Article and Find Full Text PDFThromb Haemost
December 2024
Division of Hematology, Faculty of Medicine, Excellence Center in Translational Hematology, Chulalongkorn University, Bangkok, Thailand.
Background: Megakaryocytes (MK) from Bernard-Soulier syndrome (BSS) induced pluripotent stem cells (iPSCs) yielded reduced numbers but increased sizes of platelets. The molecular mechanisms remain unclear. This study aims to determine roles of signaling molecules involved in this process.
View Article and Find Full Text PDFSemin Thromb Hemost
August 2024
Department of Pediatrics, Unit of Pediatric Hematology, Faculty of Medicine, Gazi University, Ankara, Turkey.
Bernard-Soulier syndrome (BSS) is an inherited platelet function disorder caused by mutations in the genes that encode the glycoprotein (GP) Ibα and GPIbβ subunits, as well as the GPIX subunit in the GPIbIX complex, which is located on the platelet surface and has roles in platelet adhesion and activation. Patients with autosomal recessively inherited biallelic BSS have a homozygous or compound heterozygous expression in the GPIbα, GPIbβ, and GPIX subunits of the GPIbIX complex. Patients with autosomal dominantly inherited monoallelic BSS have a heterozygous expression in only the GPIbα and GPIbβ subunits of the GPIbIX complex.
View Article and Find Full Text PDFAnn Neurol
August 2024
Neurology Department, University Hospital, Saint-Etienne, France.
Objective: There is currently scarce data on the electroclinical characteristics of epilepsy associated with synapsin 1 (SYN1) pathogenic variations. We examined clinical and electro-encephalographic (EEG) features in patients with epilepsy and SYN1 variants, with the aim of identifying a distinctive electroclinical pattern.
Methods: In this retrospective multicenter study, we collected and reviewed demographic, genetic, and epilepsy data of 19 male patients with SYN1 variants.
J Thromb Haemost
November 2024
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Laboratory Medicine, Li Ka Shing Knowledge Institute (LKSKI)-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, Ontario, Canada; CCOA Therapeutics Inc, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada. Electronic address:
Background: Snake venom botrocetin facilitates von Willebrand factor (VWF) binding to platelet GPIbα and has been widely used for the diagnosis of von Willebrand disease and GPIb-related disorders. Botrocetin is also commonly employed for the development/characterization of antithrombotics targeting the GPIb-VWF axis.
Objectives: To explore the alternative receptor(s)/mechanisms that participate in botrocetin-induced platelet aggregation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!