A synchrotron-based proton therapy system operates in a low repetition rate pulsed beam delivery mode. Unlike cyclotron-based beam delivery, there is no guarantee that a synchrotron beam can be delivered effectively or precisely under the respiratory-gated mode. To evaluate the performance of gated synchrotron treatment, we simulated proton beam delivery in the synchrotron-based respiratory-gated mode using realistic patient breathing signals. Parameters used in the simulation were respiratory motion traces (70 traces from 24 patients), respiratory gate levels (10%, 20% and 30% duty cycles at the exhalation phase) and synchrotron magnet excitation cycles (T(cyc)) (fixed T(cyc) mode: 2.7, 3.0-6.0 s and each patient breathing cycle, and variable T(cyc) mode). The simulations were computed according to the breathing trace in which the proton beams were delivered. In the shorter fixed T(cyc) (<4 s), most of the proton beams were delivered uniformly to the target during the entire expiration phase of the respiratory cycle. In the longer fixed T(cyc) (>4 s) and the variable T(cyc) mode, the proton beams were not consistently delivered during the end-expiration phase of the respiratory cycle. However we found that the longer and variable T(cyc) operation modes delivered proton beams more precisely during irregular breathing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0031-9155/55/24/016 | DOI Listing |
Polymers (Basel)
December 2024
Fujian Special Equipment Inspection and Research Institute, Fuzhou 350008, China.
The escalating demand for sustainable materials has been fueling the rapid proliferation of the biopolymer market. Biodegradable polymers within natural habitats predominantly undergo degradation mediated by microorganisms. These microorganisms secrete enzymes that cleave long-chain polymers into smaller fragments for metabolic assimilation.
View Article and Find Full Text PDFMed Phys
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
Background: All-in-one radiotherapy workflow (AIO) is a novel one-stop solution that integrates the multiple conventional radiotherapy steps from simulation, contouring, planning, image guidance, beam delivery, and in vivo dosimetry into a single device (integrated computed tomography linac, the uRT-linac 506c), making the treatment process more efficient and convenient while reducing errors for cancer patients' initial radiotherapy. Despite its numerous advantages, the implementation of AIO faces challenges such as interdisciplinary coordination, software and hardware complexity, and reliance on artificial intelligence. To ensure its safety and effectiveness, it is necessary to conduct a risk assessment and identify appropriate quality management measures.
View Article and Find Full Text PDFCells
January 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction B (n, alpha) Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, "AB-type" Lactosome nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely -Carborane (Carb) or 1,2-dihexyl--Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the "molecular glue" effect.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Medical Physics, Nova Scotia Health, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada.
intra-arc binary collimation (iABC) is a novel treatment technique in which dynamic conformal arcs are periodically interrupted with binary collimation. It has demonstrated its utility through planning studies for the treatment of multiple metastases. However, the binary collimation approach is idealized in the planning system, while the treatment deliveries must adhere to the physical limitations of the mechanical systems involved [e.
View Article and Find Full Text PDFJ Appl Clin Med Phys
January 2025
Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands.
Introduction: This paper describes a method to improve gantry-dependent beam steering for Elekta traveling wave linear accelerators by applying the measured and filtered beam servo corrections to the existing lookup table (LUT). Beam steering has a direct influence on the treatment accuracy by affecting the beam symmetry and position. The presented method provides an improved LUT with respect to the default Elekta method to reduce treatment delivery interruptions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!