Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Autophagy is a key component of our immune response to invading pathogens. Autophagic targeting of intracellular bacteria within vacuolar compartments or the cytosol helps to control bacterial replication in the host cell. The mechanism by which these invading pathogens are selectively targeted for degradation is of particular interest. Recently, several signaling factors have been shown to play roles in the specific targeting of bacteria by the autophagy pathway including: pattern recognition receptors, reactive oxygen species, ubiquitin and diacylglycerol. Here, we discuss these signaling factors and the consequences of bacterial targeting by autophagy during infection of host cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mib.2010.11.001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!