Surfactant proteins (SPs) produced by pulmonary epithelial cells participate in the regulation of sepsis-induced acute lung injury. Our previous study has shown that lipopolysaccharide (LPS), a Gram-negative bacterial outer membrane component, can regulate sp-a gene expression in human lung carcinoma type II epithelial A549 cells. This study was further designed to evaluate the signal-transducing mechanisms of LPS-induced sp-a gene expression. Exposure of A549 cells to LPS induced SP-A mRNA and protein production in time-dependent manners. Application of toll-like receptor 2 (TLR2) siRNA into A549 cells decreased the levels of this receptor and simultaneously inhibited LPS-induced SP-A mRNA expression. Sequentially, LPS enhanced phosphorylation of mitogen-activated protein kinase (MEK) 4 and c-Jun NH(2) terminal kinase 1 (JNK1) in time-dependent manners. Application of TLR2 siRNA decreased LPS-enhanced phosphorylation of MEK4 and JNK1. After knocking-down the translation of MyD88 by RNA interference, the LPS-triggered MEK4 phosphorylation was attenuated. Consequently, LPS augmented the translocation of c-Jun from the cytoplasm to nuclei without affecting c-Fos. Pretreatment of A549 cells with SP600125, an inhibitor of JNK1, significantly lowered LPS-induced SP-A mRNA production. Analyses of an electrophoretic mobility shift assay and a reporter gene further showed that LPS increased the transactivation activity of AP-1 in A549 cells. Therefore, the present study demonstrates that LPS can induce sp-a gene expression in human type II epithelial A549 cells through TLR2-mediated sequential activation of MyD88-MEK4-JNK1-AP-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.imbio.2010.10.009 | DOI Listing |
Unlabelled: Zika virus (ZIKV) infection can lead to a variety of clinical outcomes, including severe congenital abnormalities. The phosphatidylserine (PS) receptors AXL and TIM-1 are recognized as critical entry factors for ZIKV . However, it remains unclear if and how ZIKV regulates these receptors during infection.
View Article and Find Full Text PDFHeliyon
January 2025
School of Life Sciences, Department of Biochemistry, Molecular Oncology Laboratory, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:
Zhongguo Fei Ai Za Zhi
November 2024
College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
Background: The early stages of tumor bone metastasis are closely associated with changes in the vascular niche of the bone microenvironment, and abnormal angiogenesis accelerates tumor metastasis and progression. However, the effects of lung adenocarcinoma (LUAD) cells reprogrammed by the bone microenvironment on the vascular niche within the bone microenvironment and the underlying mechanisms remain unclear. This study investigates the effects and mechanisms of LUAD cells reprogrammed by the bone microenvironment on endothelial cells and angiogenesis, providing insights into the influence of tumor cells on the vascular niche within the bone microenvironment.
View Article and Find Full Text PDFCytokine
January 2025
Department of Oncology, Huabei Petroleum Administration Bureau General Hospital, 062550, Hebei, China. Electronic address:
Background: Lung adenocarcinoma (LUAD) is associated with an increasing incidence and mortality rate while existing treatment strategies continue to exhibit considerable limitation. Studies have demonstrated that upregulation of KLF4 gene inhibits LUAD progression, but its underlying mechanisms remain elusive. The present research explored roles and mechanisms of KLF4 and the NF-κB pathway in LUAD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!