Elongation factor (EF) Tu delivers aminoacyl-tRNAs to the actively translating bacterial ribosome in a GTP-hydrolysis-dependent process. Rapid recycling of EF-Tu, catalyzed by EF-Ts, is required for efficient protein synthesis in vivo. Here we report a combined theoretical and experimental approach aimed at identifying three-dimensional communication networks in EF-Tu. As an example, we focus on the mechanistic role of second-shell residue Asp(109). We constructed full-length structural models of EF-Tu from Escherichia coli in the GDP-/GTP-bound state and performed several 10-ns-long molecular-dynamics simulations. During these simulations, the side chain of Asp(109) formed a previously undetected transient hydrogen bond to His(22), an invariant residue in the phosphate-binding loop (P-loop). To experimentally validate our molecular-dynamics results and further analyze the role of this hydrogen bond, we determined all rate constants for the multistep reaction between EF-Tu (wild-type and two mutants), EF-Ts, GDP, and GTP using the stopped-flow technique. This mutational analysis revealed that the side chain of Asp(109) is important for acceleration of GDP, but not for GTP dissociation by EF-Ts. The possibility that the Asp(109) side chain has a role in transition-state stabilization and coupling of P-loop movements with rearrangements at the base side of the nucleotide is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2998634 | PMC |
http://dx.doi.org/10.1016/j.bpj.2010.10.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!