Salicylic acid (SA) is known to affect photosynthesis under normal conditions and induces tolerance in plants to biotic and abiotic stresses through influencing physiological processes. In this study, physiological processes were compared in salt-tolerant (Pusa Vishal) and salt-sensitive (T44) cultivars of mungbean and examined how much these processes were induced by SA treatment to alleviate decrease in photosynthesis under salt stress. Cultivar T44 accumulated higher leaf Na(+) and Cl(-) content and exhibited greater oxidative stress than Pusa Vishal. Activity of antioxidant enzymes, ascorbate peroxidase (APX) and glutathione reductase (GR) was greater in Pusa Vishal than T44. Contrarily, activity of superoxide dismutase (SOD) was greater in T44. The greater accumulation of leaf nitrogen and sulfur through higher activity of their assimilating enzymes, nitrate reductase (NR) and ATP-sulfurylase (ATPS) increased reduced glutathione (GSH) content more conspicuously in Pusa Vishal than T44. Application of 0.5 mM SA increased nitrogen and sulfur assimilation, GSH content and activity of APX and GR. This resulted in the increase in photosynthesis under non-saline condition and alleviated the decrease in photosynthesis under salt stress. It also helped in restricting Na(+) and Cl(-) content in leaf, and maintaining higher efficiency of PSII, photosynthetic N-use efficiency (NUE) and water relations in Pusa Vishal. However, application of 1.0 mM SA resulted in inhibitory effects. The effect of SA was more pronounced in Pusa Vishal than T44. These results indicate that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the activity of NR and ATPS, and increasing antioxidant metabolism to a greater extent in Pusa Vishal than T44.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2010.11.001DOI Listing

Publication Analysis

Top Keywords

pusa vishal
28
vishal t44
16
photosynthesis salt
12
salt stress
12
nitrogen sulfur
12
decrease photosynthesis
12
salicylic acid
8
sulfur assimilation
8
antioxidant metabolism
8
physiological processes
8

Similar Publications

Article Synopsis
  • Chromium (Cr) is a toxic metal that affects plant growth by disrupting nutrient uptake and other physiological processes, leading to reduced agricultural yields.
  • The study investigates the effects of different Cr concentrations and hydrogen sulfide (HS) application on two mungbean varieties, revealing that HS mitigates Cr-related damage by enhancing growth, antioxidant activity, and nutrient uptake.
  • Results indicate that HS treatment reduces oxidative stress and Cr accumulation in plants, suggesting its potential role in developing strategies to improve heavy metal tolerance in crops.
View Article and Find Full Text PDF

The major threat to mungbean (Vigna radiata L.) cultivation in the Indian subcontinent is yellow mosaic diseases (YMD), caused by Begomovirus containing bipartite genomes (DNA-A and DNA-B). In the current study, we address the epidemiology of begomoviruses infecting mungbean plants in three YMD hotspot regions of India.

View Article and Find Full Text PDF

Drought is a detrimental factor to gaining higher yields in rice ( L.), especially amid the rising occurrence of drought across the globe. To combat this situation, it is essential to develop novel drought-resilient varieties.

View Article and Find Full Text PDF

Phosphorus (P) is one of the major constraints for crop growth and development, owing to low availability and least mobility in many tropical soil conditions. Categorization of existing germplasm under P deficient conditions is a prerequisite for the selection and development of P efficient genotypes in the mungbean. In the present investigation, 36 diverse genotypes were categorized for phosphorus use efficiency traits using four different techniques for identification of phosphorus use efficient mungbean genotypes.

View Article and Find Full Text PDF

Chromium (Cr) presently used in various major industries and its residues possess a potent environmental threat. Contamination of soil and water resources due to Cr ions and its toxicity has adversely affected plant growth and crop productivity. Here, deleterious effects of different levels of Cr (VI) treatments i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!