RecQ-like DNA helicases are conserved from bacteria to humans. They perform functions in the maintenance of genome stability, and their mutation is associated with cancer predisposition and premature aging syndromes in humans. Here, a series of C-terminal deletions and point mutations of Sgs1, the only RecQ-like helicase in yeast, show that the Helicase/RNase D C-terminal domain and the Rad51 interaction domain are dispensable for Sgs1's role in suppressing genome instability, whereas the zinc-binding domain and the helicase domain are required. BLM expression from the native SGS1 promoter had no adverse effects on cell growth and was unable to complement any sgs1Δ defects. BLM overexpression, however, significantly increased the rate of accumulating gross-chromosomal rearrangements in a dosage-dependent manner and greatly exacerbated sensitivity to DNA-damaging agents. Co-expressing sgs1 truncations of up to 900 residues, lacking all known functional domains of Sgs1, suppressed the hydroxyurea sensitivity of BLM-overexpressing cells, suggesting a functional relationship between Sgs1 and BLM. Protein disorder prediction analysis of Sgs1 and BLM was used to produce a functional Sgs1-BLM chimera by replacing the N-terminus of BLM with the disordered N-terminus of Sgs1. The functionality of this chimera suggests that it is the disordered N-terminus, a site of protein binding and posttranslational modification, that confers species specificity to these two RecQ-like proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3065180 | PMC |
http://dx.doi.org/10.1016/j.jmb.2010.11.035 | DOI Listing |
J Biochem Mol Toxicol
December 2024
Genome Stability Regulation Lab, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India.
Ucc1, an F-box motif-containing protein of Saccharomyces cerevisiae encoded by UCC1 regulates energy metabolism through proteasomal degradation of citrate synthase Cit2 and inactivation of the glyoxylate cycle when glucose is present as the main carbon source in the growth medium. Rrm3, a Pif1 family DNA helicase, encoded by RRM3 regulates the movement of the replication forks during the DNA replication process. Here in this study, we present evidence of binary genetic interaction between both the genes, UCC1 and RRM3, that determine the growth rate, cell morphology, cell size, apoptosis, and stress response.
View Article and Find Full Text PDFbioRxiv
September 2024
Howard Hughes Medical Institute, University of California Davis, Davis, CA, USA.
Chromosomal linkages formed through crossover recombination are essential for accurate segregation of homologous chromosomes during meiosis. DNA events of recombination are spatially and functionally linked to structural components of meiotic chromosomes. Imperatively, biased resolution of double-Holliday junction (dHJ) intermediates into crossovers occurs within the synaptonemal complex (SC), the meiosis-specific structure that mediates homolog synapsis during the pachytene stage.
View Article and Find Full Text PDFMalar J
August 2024
Evolutionary Ecology and Infection biology, Department of Biology, Lund University, Lund, Sweden.
Stalled replication forks can be processed by several distinct mechanisms collectively called post-replication repair which includes homologous recombination, fork regression, and translesion DNA synthesis. However, the regulation of the usage between these pathways is not fully understood. The Rad51 protein plays a pivotal role in maintaining genomic stability through its roles in HR and in protecting stalled replication forks from degradation.
View Article and Find Full Text PDFEMBO J
July 2024
Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
The Mec1/ATR kinase is crucial for genome stability, yet the mechanism by which it prevents gross chromosomal rearrangements (GCRs) remains unknown. Here we find that in cells with deficient Mec1 signaling, GCRs accumulate due to the deregulation of multiple steps in homologous recombination (HR). Mec1 primarily suppresses GCRs through its role in activating the canonical checkpoint kinase Rad53, which ensures the proper control of DNA end resection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!