The zebrafish is one of the leading models for the analysis of the vertebrate visual system. A wide assortment of molecular, genetic, and cell biological approaches is available to study zebrafish visual system development and function. As new techniques become available, genetic analysis and imaging continue to be the strengths of the zebrafish model. In particular, recent developments in the use of transposons and zinc finger nucleases to produce new generations of mutant strains enhance both forward and reverse genetic analysis. Similarly, the imaging of developmental and physiological processes benefits from a wide assortment of fluorescent proteins and the ways to express them in the embryo. The zebrafish is also highly attractive for high-throughput screening of small molecules, a promising strategy to search for compounds with therapeutic potential. Here we discuss experimental approaches used in the zebrafish model to study morphogenetic transformations, cell fate decisions, and the differentiation of fine morphological features that ultimately lead to the formation of the functional vertebrate visual system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120770 | PMC |
http://dx.doi.org/10.1016/B978-0-12-384892-5.00006-2 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, GT Road, Moga, 142001, Punjab, India.
In examining the enduring consequences of diabetes, recent research has focused on the anticipated outcomes of the condition. Specifically, cognitive impairment has been linked to diabetes mellitus dating back to the discovery of insulin. This study delves into the neuroprotective effects of TZP, i.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China. Electronic address:
Ethnopharmacological Relevance: As digestive health issues rise and interest in natural therapies grows, traditional herbs like Cassia Seed are gaining attention for their antioxidant, laxative, and digestive benefits.
Aim Of The Study: This study aimed to optimize the fermentation conditions of Cassia seed using microbial technology to enhance the content of anthraquinone compounds, thereby augmenting its pharmacological effects, particularly in promoting intestinal peristalsis and alleviating constipation.
Materials And Methods: Fermentation of Cassia Seed was conducted under controlled microbial conditions.
Eur J Pharmacol
January 2025
Institute of Translational Biomedicine (ITBM), St. Petersburg State University, St. Petersburg, Russia; Department of Biosciences and Bioinformatics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China; Suzhou Municipal Key Laboratory of Neurobiology and Cell Signaling, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou, China. Electronic address:
Tyramine, β-phenylethylamine, octopamine and other trace amines are endogenous substances recently recognized as important novel neurotransmitters in the brain. Trace amines act via multiple selective trace amine-associated receptors (TAARs) of the G protein-coupled receptor family. TAARs are expressed in various brain regions and modulate neurotransmission, neuronal excitability, adult neurogenesis, cognition, mood, locomotor activity and olfaction.
View Article and Find Full Text PDFThe mammalian kidney develops in three sequential stages referred to as the pronephros, mesonephros, and metanephros, each developing from the preceding form. All three phases of kidney development utilize epithelized tubules called nephrons, which function to take in filtrate from the blood or coelom and selectively reabsorb solutes the organism needs, leaving waste products to be excreted as urine. The pronephros are heavily studied in aquatic organisms such as zebrafish and Xenopus, as they develop quickly and are functional.
View Article and Find Full Text PDFThe retinal pigment epithelium (RPE) surrounds the posterior eye and maintains the health and function of the photoreceptors. Consequently, RPE dysfunction or damage has a devastating impact on vision. Due to complex etiologies, there are currently no cures for patients with RPE degenerative diseases, which remain some of the most prevalent causes of vision loss worldwide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!