The purpose of this study was to develop tween 80 (T-80) coated polylactide-co-glycolide (PLGA) nanoparticles that can deliver estradiol to the brain upon oral administration. Estradiol containing nanoparticles were made by a single emulsion technique and T-80 coating was achieved by incubating the re-constituted nanoparticles at different concentrations of T-80. The process of T-80 coating on the nanoparticles was optimized and the pharmacokinetics of estradiol nanoparticles was studied as a function of T-80 coating. The nanoparticles were then evaluated in an ovariectomized (OVX) rat model of Alzheimer's disease (AD) that mimics the postmenopausal conditions. The nanoparticles bound T-80 were found to proportionally increase from 9.72 ± 1.07 mg to 63.84 ± 3.59 mg with an increase in the initial concentration T-80 from 1% to 5% and were stable in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Orally administered T-80 coated nanoparticles resulted in significantly higher brain estradiol levels after 24h (1.969 ± 0.197 ng/g tissue) as compared to uncoated ones (1.105 ± 0.136 ng/g tissue) at a dose of 0.2mg/rat, suggesting a significant role of surface coating. Moreover, these brain estradiol levels were almost similar to those obtained after administration of the same dose of drug suspension via 100% bioavailable intramuscular route (2.123 ± 0.370 ng/g tissue), indicating the increased fraction of bioavailable drug reaching the brain when administered orally. Also, the nanoparticle treated group was successful in preventing the expression of amyloid beta-42 (Aβ42) immunoreactivity in the hippocampus region of brain. Together, the results indicate the potential of nanoparticles for oral delivery of estradiol to brain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2010.11.013 | DOI Listing |
Adv Sci (Weinh)
July 2024
Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg (HI ERN), Immerwahrstraße 2, 91058, Erlangen, Germany.
Reliable fabrication of large-area perovskite films with antisolvent-free printing techniques requires high-volatility solvents, such as 2-methoxyethanol (2ME), to formulate precursor inks. However, the fabrication of high-quality cesium-formamidinium (Cs-FA) perovskites has been hampered using volatile solvents due to their poor coordination with the perovskite precursors. Here, this issue is resolved by re-formulating a 2ME-based CsFAPbI ink using pre-synthesized single crystals as the precursor instead of the conventional mixture of raw powders.
View Article and Find Full Text PDFSmall
July 2024
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China.
Morphological homogeneity and interfacial traps are essential issues to achieve high-efficiency and stable large-area organic solar cells (OSCs). Herein, by the investigation of three quinoxaline-based acceptors, i.e.
View Article and Find Full Text PDFJ Am Chem Soc
January 2024
The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
Perovskite solar cells (PSCs) that incorporate both two-dimensional (2D) and three-dimensional (3D) phases possess the potential to combine the high stability of 2D PSCs with the superior efficiency of 3D PSCs. Here, we demonstrated in situ phase reconstruction of 2D/3D perovskites using a 2D perovskite single-crystal-assisted method. A gradient phase distribution of 2D RP perovskites was formed after spin-coating a solution of the 2D Ruddlesden-Popper (RP) perovskite single crystal, (DFP)PbI, onto the 3D perovskite surface, followed by thermal annealing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2023
Centre for Nano and Soft Matter Sciences, Bangalore 562162, Karnataka, India.
Electrochromic windows have gained growing interest for their ability to change their optical state in the visible and NIR ranges with minimal input power, making them energy-efficient. However, material processing costs, fabrication complexity, and poor electrochromic properties can be barriers to the widespread adoption of this technology. To address these issues, electrochromic material and fabrication processes are designed to realize their potential as a cost-effective and energy-efficient technology.
View Article and Find Full Text PDFAdv Mater
December 2023
Guangdong Engineering Technology Research Center for Photoelectric Sensing Materials & Devices, Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China.
Laboratory-scale all-polymer solar cells (all-PSCs) have exhibited remarkable power conversion efficiencies (PCEs) exceeding 19%. However, the utilization of hazardous solvents and nonvolatile liquid additives poses challenges for eco-friendly commercialization, resulting in the trade-off between device efficiency and operation stability. Herein, an innovative approach based on isomerized solid additive engineering is proposed, employing volatile dithienothiophene (DTT) isomers to modulate intermolecular interactions and facilitate molecular stacking within the photoactive layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!