Under- and over-nutrition during pregnancy has been linked to the later development of diseases such as diabetes and obesity. Epigenetic modifications may be one mechanism by which exposure to an altered intrauterine milieu or metabolic perturbation may influence the phenotype of the organism much later in life. Epigenetic modifications of the genome provide a mechanism that allows the stable propagation of gene expression from one generation of cells to the next. This review highlights our current knowledge of epigenetic gene regulation and the evidence that chromatin remodelling and histone modifications play key roles in adipogenesis and the development of obesity. Epigenetic modifications affecting processes important to glucose regulation and insulin secretion have been described in the pancreatic β-cells and muscle of the intrauterine growth-retarded offspring, characteristics essential to the pathophysiology of type-2 diabetes. Epigenetic regulation of gene expression contributes to both adipocyte determination and differentiation in in vitro models. The contributions of histone acetylation, histone methylation and DNA methylation to the process of adipogenesis in vivo remain to be evaluated.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0029665110003988DOI Listing

Publication Analysis

Top Keywords

epigenetic modifications
12
obesity epigenetic
8
gene expression
8
epigenetic
5
epigenetics maternal
4
maternal nutrition
4
nutrition nature
4
nature nurture
4
nurture under-
4
under- over-nutrition
4

Similar Publications

A systematic review of associations between the environment, DNA methylation, and cognition.

Environ Epigenet

December 2024

Institute of Clinical Science B, Royal Victoria Hospital, Centre for Public Health, Queens' University Belfast, Grosvenor Rd, Belfast BT12 6BA, United Kingdom.

The increasing prevalence of neurodegenerative diseases poses a significant public health challenge, prompting a growing focus on addressing modifiable risk factors of disease (e.g. physical inactivity, mental illness, and air pollution).

View Article and Find Full Text PDF

The Impact of Epigenetics on the Pathophysiology of Type 2 Diabetes and Associated Nephropathic Complications.

Indian J Endocrinol Metab

December 2024

Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.

Type 2 diabetes (T2D) is a long-term metabolic condition that presents considerable health challenges globally. As the disease progresses, the interplay between genetic, environmental, and lifestyle factors becomes increasingly evident, leading to complications. Epigenetics has emerged as a critical area of research, providing insights into how these factors can modify the expression and cellular behavior without altering the underlying DNA sequence.

View Article and Find Full Text PDF

Advancing veterinary vaccines design through trained immunity insights.

Front Vet Sci

January 2025

College of Life Science, Longyan University, Longyan, China.

Trained immunity, characterized by long-term functional reprogramming of innate immune cells, offers promising new directions for veterinary vaccine development. This perspective examines how trained immunity can be integrated into veterinary vaccine design through metabolic reprogramming and epigenetic modifications. We analyze key molecular mechanisms, including the shift to aerobic glycolysis and sustained epigenetic changes, that enable enhanced immune responses.

View Article and Find Full Text PDF

Background: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment.

View Article and Find Full Text PDF

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!