Calpains and delayed calcium deregulation in excitotoxicity.

Neurochem Res

Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal.

Published: December 2010

Overactivation of glutamate receptors results in neurodegeneration in a variety of brain pathologies, including ischemia, epilepsy, traumatic brain injury and slow-progressing neurodegenerative disorders. In all these pathologies, it is well accepted that the calcium-dependent cysteine proteases calpains are key players in the mechanisms of neuronal cell death. Many research groups have been actively pursuing to establish a link between the deregulation of intracellular Ca(2+) homeostasis associated with excitotoxicity and calpain activity. It is well established that these two events are connected and interact synergistically to promote neurodegeneration, but whether calpain activity depends on or contributes to Ca(2+) deregulation is still under debate.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11064-010-0323-zDOI Listing

Publication Analysis

Top Keywords

calpain activity
8
calpains delayed
4
delayed calcium
4
calcium deregulation
4
deregulation excitotoxicity
4
excitotoxicity overactivation
4
overactivation glutamate
4
glutamate receptors
4
receptors neurodegeneration
4
neurodegeneration variety
4

Similar Publications

Insights into Structure and Function of Growth Arrest Specific 2 (GAS2).

J Cancer

January 2025

Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.

Growth arrest specific 2 (GAS2) is a microfilament-associated protein, which is widely distributed in human tissues. It exerts a pivotal influence on various cellular processes, including cytoskeletal regulation, cell cycle progression, apoptosis, and senescence. GAS2 has a dual function in cancer cell growth: on the one hand, it enhances the sensitivity of cancer cells to chemoradiotherapy and prevents malignant transformation of normal cells; but on the other hand, it maintains the growth of cancer cells.

View Article and Find Full Text PDF

The athlete's paradox states that intramyocellular triglyceride accumulation associates with insulin resistance in sedentary but not in endurance-trained humans. Underlying mechanisms and the role of muscle lipid distribution and composition on glucose metabolism remain unclear. We compared highly trained athletes (ATHL) with sedentary normal weight (LEAN) and overweight-to-obese (OVWE) male and female individuals.

View Article and Find Full Text PDF

Lenvatinib, an approved first-line regimen, has been widely applied in hepatocellular carcinoma (HCC). However, clinical response towards Lenvatinib was limited, emphasizing the importance of understanding the underlying mechanism of its resistance. Herein, we employed integrated bioinformatic analysis to identify calpain-2 (CAPN2) as a novel key regulator for Lenvatinib resistance in HCC, and its expression greatly increased in both Lenvatinib-resistant HCC cell lines and clinical samples.

View Article and Find Full Text PDF

Human calpain-3 and its structural plasticity: dissociation of a homohexamer into dimers on binding titin.

J Biol Chem

December 2024

Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada. Electronic address:

Calpain-3 is an intracellular Ca-dependent cysteine protease abundant in skeletal muscle. Loss-of-function mutations in its single-copy gene cause a dystrophy of the limb-girdle muscles. These mutations, of which there are over 500 in humans, are spread all along this 94-kDa multi-domain protein that includes three 40+-residue sequences (NS, IS1, and IS2).

View Article and Find Full Text PDF

Background: Obstructive sleep apnea (OSA) is an intermittent hypoxia disorder associated with cognitive dysfunction, including learning and memory impairments. There is evidence that alterations in protease activity and neuronal activation as associated with cognitive dysfunction, are dependent on sex, and may be brain region-specific. However, the mechanisms mediating OSA-induced cognitive impairments are unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!