New mesostructured organosilica with chiral sugar derived structures: nice host for gold nanoparticles stabilisation.

Dalton Trans

Institut Charles Gerhardt Montpellier, UMR5253, CNRS-UM2-ENSCM-UM1, CMOS, Place E. Bataillon, F-34095, Montpellier, France.

Published: January 2011

In this paper we describe the synthesis of functionalised mesoporous organosilicas containing a mannitol derivative in the framework. For this purpose, a bis-silylated precursor 3,4-Di-O-[3-(triethoxysilylpropyl)carbamate]-1,2:5,6-di-O-isopropylidene-D-mannitol was prepared by coupling of 1,2:5,6-di-O-isopropylidene-D-mannitol with 3-(triethoxysilylpropyl)isocyanate. The framework-functionalised materials were obtained in one step by the "direct synthesis" method which consists of a co-hydrolysis and polycondensation of a bis-silylated mannitol precursor with tetraethylorthosilicate (TEOS) in the presence of a non-ionic triblock co-polymer (P123) as structure-directing agent. Interestingly, deprotection of the 1,2,5,6 OH functional groups occurred during the material synthesis. The obtained solids were characterized by (13)C and (29)Si CP-MAS NMR, N(2) adsorption-desorption, powder X-ray diffraction, TEM and elemental analysis. We have shown that, the OH functional groups, which are released during the synthesis of the mesoporous silica, can be used for chelation of ions and stabilisation of nanoparticles. The subsequent growth of gold (0) nanoparticles in the wall has been investigated and evidenced.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c0dt01162bDOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
functional groups
8
mesostructured organosilica
4
organosilica chiral
4
chiral sugar
4
sugar derived
4
derived structures
4
structures nice
4
nice host
4
host gold
4

Similar Publications

Gold nanoparticles (AuNPs) play a key role in the field of nanomedicine due to their fascinating plasmonic properties as well as their great biocompatibility. An intriguing application is the use of plasmonic photothermal therapy (PPTT) mediated by anisotropic AuNPs irradiated with a near-infrared (NIR) laser for treating ocular diseases in ophthalmology. For this purpose, bipyramidal-shaped AuNPs (BipyAu), which were surface-functionalized with three different organic ligands (citrate, polystyrene sulphonate (PSS), and cetyltrimethylammonium bromide (CTAB)), were synthesized.

View Article and Find Full Text PDF

This paper explores the development of an opto-thermal-electrical model for plasmonic Schottky solar cells (PSSCs) using a comprehensive multiphysics approach. We simulated the optical properties, power conversion efficiencies, and energy yield of PSSCs with varying nanoparticle (NP) configurations and sizes. Our spectral analysis focused on the absorption characteristics of these solar cells, examining systems sized 3 × 3, 5 × 5, and 7  × 7, with NP radii ranging from 10 to 150 nm.

View Article and Find Full Text PDF

Cancer cells sense and respond to the extracellular environment, with differences in nanoscale ligand spacing affecting their behavior. Emerging reports show that stretch/ultrasound-mediated mechanical forces promote apoptosis (mechanoptosis) by increasing myosin contractility. Since myosin contractility is critical for nanoscale-ligand spacing-regulated cell behavior, we study the effect of ligand spacing on mechanoptosis.

View Article and Find Full Text PDF

Ferrous Tungstate Nanomaterials with Excellent Enzyme-Mimicking Activity to Enhance Lateral Flow Immunoassay Sensitivity.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Jilin, Changchun 130022, China.

Lateral flow immunochromatography (LFIA) with gold nanoparticles (AuNPs) is widely used in the biomedical field as a rapid and simple in vitro detection technique. However, the conventional AuNP-LFIA has limitations in sensitivity and detection range. In this study, nonprecious metal iron-based bimetallic FeWO nanomaterials with convenient and excellent enzyme-mimetic catalytic activities were synthesized by a one-pot hydrothermal method.

View Article and Find Full Text PDF

Type-2-diabetes is a metabolic disorder where misfolding and oligomerization of islet amyloid polypeptide (IAPP) around islet-β cells oligomerizes and participates in the pathology. The oligomeric stage is toxic but transitory and leads to the formation of mature amyloid fibrils. The pathological specifics of mature amyloid fibrils are poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!