Calcium imaging of auditory nerve fiber terminals in the cochlear nucleus.

J Neurosci Methods

Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.

Published: January 2011

One important model for understanding neuronal computation is how auditory information is transformed at the synapses made by auditory nerve (AN) fibers on the bushy cells (BCs) in the anteroventral cochlear nucleus (AVCN). This transformation is influenced by synaptic plasticity, the mechanisms of which have been studied primarily using postsynaptic electrophysiology. However, it is also important to make direct measurements of the presynaptic terminal to consider presynaptic mechanisms. Here we introduce a technique for doing that using calcium imaging of presynaptic AN terminals, by injecting dextran-conjugated fluorophores into the cochlea. To measure the calcium transients, we used calcium-sensitive fluorophores, and measured the changes in fluorescence upon stimulation. As an example of the application of this technique, we showed that activation of GABA(B) receptors reduces presynaptic calcium influx. This technique could be further extended to study the effects of activity- and other neuromodulator-dependent plasticities on AN terminals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019277PMC
http://dx.doi.org/10.1016/j.jneumeth.2010.11.008DOI Listing

Publication Analysis

Top Keywords

calcium imaging
8
auditory nerve
8
cochlear nucleus
8
calcium
4
imaging auditory
4
nerve fiber
4
fiber terminals
4
terminals cochlear
4
nucleus model
4
model understanding
4

Similar Publications

Single cell Ca imaging is essential for the study of Ca channels activated by various stimulations like temperature, voltage, native compound and chemicals et al. It primarily relies on microscopy imaging technology and the related Ca indicator Fura-2/AM (AM is the abbreviation for Acetoxymethyl ester). Inside the cells, Fura-2/AM is hydrolyzed by esterases into Fura-2, which can reversibly bind with free cytoplasmic Ca.

View Article and Find Full Text PDF

A 50-year-old woman with kidney failure complained of back pain and an inability to walk. The medical history included hypothyroidism, nephrolithiasis, and resistant anemia aligned with several transfusions. The examination showed hepatosplenomegaly, lower limb weakness, absence of reflexes, and lack of sensations with a sensory level T6.

View Article and Find Full Text PDF

[Deep brain imaging by using GRIN lens].

Nihon Yakurigaku Zasshi

January 2025

Endowed Department of Cognitive Function and Pathology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences.

Elucidating the neural mechanisms governing changes in individual animal behavior is a key goal in neuroscience. Such research has important implications for behavioral pharmacology and could lead to the development of treatments for psychiatric and neurological disorders. Given that the brain likely represents vast amounts of information through the combined activity of multiple neurons, studying these mechanisms requires the simultaneous recording of many neurons.

View Article and Find Full Text PDF

A 51-year-old man presented to the emergency department with rapidly progressive dyspnea that developed while climbing Mount Fuji. He had climbed Mount Fuji twice without experiencing similar symptoms. On arrival, his oxygen saturation was 91% on 10 L/min of oxygen with a non-rebreather mask.

View Article and Find Full Text PDF

Ovarian cancer (OC) is a highly malignant gynecological tumor, and its effective treatment is frequently impeded by drug resistance and recurrent tumor growth. The reprogramming of glutamine metabolism in ovarian cancer is closely associated with tumor progression and the immunosuppressive tumor microenvironment. Recently, targeting metabolic reprogramming has emerged as a promising approach for cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!