A cellulase-producing bacterial strain designated Z5 was isolated from the fecal matter of Zebra (Equus zebra). The strain was identified as Microbacterium sp. on the basis of 16S rDNA sequence analysis. The effect of substrates like CMC, avicel, starch, maltose, sucrose, glucose, fructose, galactose, and lactose on cellulase production was also determined. Lactose as the sole carbon source induced cellulase production in this bacterial strain and a positive synergistic effect of lactose and CMC was also observed with enhancement of 3-4 times in cellulase activity. The optimum cellulase production was recorded with 3% CMC and 1% lactose when added individually in the Omeliansky's medium. The optimum temperature and time for cellulase production by this bacterial strain was 37°C and 10 days, respectively. To our knowledge this is the first report on enhancement of cellulase production by lactose in the Microbacterium sp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00284-010-9816-x | DOI Listing |
Int Microbiol
January 2025
Phytopathology Unit, Department of Plant Protection, Ecole Nationale d'Agriculture de Meknès, Km 10, Rte Haj Kaddour, BP S/40, 50001, Meknes, Morocco.
Olive trees are susceptible to various diseases, notably root rot caused by Pythium spp., which presents significant challenges to cultivation. Conventional chemical control methods have limitations, necessitating exploration of eco-friendly alternatives like biological control strategies.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
PG & Research Department of Physics, AVVM Sri Pushpam College (Autonomous), [Affiliated to Bharathidasan University, Tiruchirappalli], Poondi, Thanjavur 613503, Tamil Nadu, India. Electronic address:
Development of bio-supported photocatalysts has become a pressing need in the field of environmental remediation. This work reports the synthesis of bio-enzyme (from banana peels) inherited (ZnO/g-CN) nanocomposite by simple soft chemical method and its photocatalytic degradation ability against the mixed dye (Methylene blue (MB) + Rhodamine-B (RhB)) under UV irradiation. Synthesized nanoparticles were characterized using experimental techniques XRD, FESEM, TEM, EDAX, XPS, UV-vis-NIR spectroscopy and FTIR.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Forest Product Biotechnology/Bioenergy Group, Department of Wood Science, University of British Columbia, 2424 Main Mal, Vancouver V6T 1Z4, Canada. Electronic address:
Modern enzyme cocktails often include lytic polysaccharide monooxygenase (LPMO) as an accessory enzyme that enhances cellulose accessibility during hydrolysis. Although lignin is known to generally impede cellulose hydrolysis, previous research has demonstrated lignin's potential to act as a co-factor in boosting LPMO activity and that the negative impact of lignin limiting enzyme accessibility can be mitigated by sulfonated. When sulphonated lignin was added to microcrystalline cellulose (Avicel) the activity of the lytic polysaccharide monooxygenase (LPMO) was boosted, as determined when using a quartz crystal microbalance and dissipation monitoring (QCM-D).
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China.
Steam explosion (SE) and cellulase treatment are potentially effective processing methods for by-products, for use in high-value applications. The treatment conditions were optimized by response surface methodology, increasing the soluble dietary fiber (SDF) yield by 1.52 and 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!